1
|
Della Rocca Y, Diomede F, Konstantinidou F, Gatta V, Stuppia L, Benedetto U, Zimarino M, Lanuti P, Trubiani O, Pizzicannella J. Autologous hGMSC-Derived iPS: A New Proposal for Tissue Regeneration. Int J Mol Sci 2024; 25:9169. [PMID: 39273117 PMCID: PMC11395260 DOI: 10.3390/ijms25179169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The high mortality in the global population due to chronic diseases highlights the urgency to identify effective alternative therapies. Regenerative medicine provides promising new approaches for this purpose, particularly in the use of induced pluripotent stem cells (iPSCs). The aim of the work is to establish a new pluripotency cell line obtained for the first time by reprogramming human gingival mesenchymal stem cells (hGMSCs) by a non-integrating method. The hGMSC-derived iPS line characterization is performed through morphological analysis with optical and electron scanning microscopy and through the pluripotency markers expression evaluation in cytofluorimetry, immunofluorescence, and RT-PCR. To confirm the pluripotency of new hGMSC-derived iPS, the formation of embryoid bodies (EBs), as an alternative to the teratoma formation test, is studied in morphological analysis and through three germ layers' markers' expression in immunofluorescence and RT-PCR. At the end, a comparative study between parental hGMSCs and derived iPS cells is performed also for the extracellular vesicles (EVs) and their miRNA content. The new hGMSC-derived iPS line demonstrated to be pluripotent in all aspects, thus representing an innovative dynamic platform for personalized tissue regeneration.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Fanì Konstantinidou
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Umberto Benedetto
- Department of Cardiac Surgery, "S.S. Annunziata" Hospital, ASL 2 Abruzzo, Via dei Vestini, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Marco Zimarino
- Department of Cardiology, "S.S. Annunziata" Hospital, ASL 2 Abruzzo, Via dei Vestini, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, "G. d'Annunzio" University of Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy
| |
Collapse
|
2
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
3
|
Teawcharoensopa C, Srisuwan T. The potential use of ascorbic acid to recover the cellular senescence of lipopolysaccharide-induced human apical papilla cells: an in vitro study. Clin Oral Investig 2023; 28:49. [PMID: 38153550 DOI: 10.1007/s00784-023-05455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To examine the effect of lipopolysaccharide (LPS) on cellular senescence induction of human apical papilla cells (hAPCs) and evaluate the potential use of 50 μg/ml ascorbic acid to recover cellular senescence and regenerative functions. MATERIALS AND METHODS hAPCs were treated with LPS at 1 and 10 μg/ml either with or without 50 μg/ml ascorbic acid for 48 h. The cellular senescence biomarkers were analyzed by senescence-associated β-galactosidase (SA-β-gal) staining and senescence-related gene expression, p16 and p21. Cell migration, at 12 h and 24 h, was evaluated using a scratch wound assay. Mineralization potential was assessed at 21 days using Alizarin red S staining and dentine sialophosphoprotein (DSPP) and bone sialoprotein (BSP) gene expression. RESULTS 1 μg/ml and 10 μg/ml LPS stimulation for 48 h induced cellular senescence, as shown by remarkable SA-β-gal staining and p16 and p21 gene expression. The percentage of wound closure and mineralized formation was reduced. The co-incubation with ascorbic acid significantly down-regulated the level of SA-β-gal staining. The reduction of senescence-associated gene expressions was observed. Ascorbic acid improved cell migration, mineralized nodule formation, and the expression of DSPP and BSP genes in LPS-treated hAPCs. CONCLUSIONS LPS significantly promoted cellular senescence on hAPCs and diminished the cell function capacity. Co-presence of ascorbic acid could impede cellular senescence and possibly improve the regenerative capacity of LPS-induced senescent hAPCs in vitro. CLINICAL RELEVANCE The data support the in vitro potential benefit of ascorbic acid on cellular senescence recovery of apical papilla cells.
Collapse
Affiliation(s)
- Chananporn Teawcharoensopa
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand
- Sikhoraphum Hospital Dental Department, Surin, TH, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand.
| |
Collapse
|
4
|
Diederich A, Fründ HJ, Trojanowicz B, Navarrete Santos A, Nguyen AD, Hoang-Vu C, Gernhardt CR. Influence of Ascorbic Acid as a Growth and Differentiation Factor on Dental Stem Cells Used in Regenerative Endodontic Therapies. J Clin Med 2023; 12:jcm12031196. [PMID: 36769844 PMCID: PMC9917775 DOI: 10.3390/jcm12031196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vitamin C is one of the major extracellular nonenzymatic antioxidants involved in the biosynthesis of collagen. It promotes the growth of fibroblasts, wound healing processes, and enhances the survival and differentiation of osteoblasts. The potential effects of ascorbic acid on human dental pulp cells (DPC) and the cells of the apical papilla (CAP) used in actual regenerative endodontic procedures remain largely unknown. In this study, we investigated the possible employment of ascorbic acid in the differentiation and regenerative therapies of DPC and CAP. METHODS Nine extracted human wisdom teeth were selected for this study. Subpopulations of stem cells within DPC and CAP were sorted with the mesenchymal stem cell marker STRO-1, followed by treatments with different concentrations (0 mM, 0.1 mM, 0.5 mM, and 1.0 mM) of ascorbic acid (AA), RT-PCR, and Western blot analysis. RESULTS FACS analysis revealed the presence of cell subpopulations characterized by a strong expression of mesenchymal stem cell marker STRO-1 and dental stem cell markers CD105, CD44, CD146, CD90, and CD29. Treatment of the cells with defined amounts of AA revealed a markedly increased expression of proliferation marker Ki-67, especially in the concentration range between 0.1 mM and 0.5 mM. Further investigations demonstrated that treatment with AA led to significantly increased expression of common stem cell markers OCT4, Nanog, and Sox2. The most potent proliferative and expressional effects of AA were observed in the concentration of 0.1 mM. CONCLUSIONS AA might be a novel and potent growth promoter of human dental cells. Increasing the properties of human dental pulp cells and the cells of the apical papilla using AA could be a useful factor for further clinical developments of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Antje Diederich
- University Outpatient Clinic for Conservative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
- Correspondence: ; Tel.: +49-345-557-3737
| | - Hanna Juliane Fründ
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | | | - Anh Duc Nguyen
- University Outpatient Clinic for Conservative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
- Private Dental Practice, Dr. Juliane Gernhardt, 06120 Halle, Germany
| | - Cuong Hoang-Vu
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Christian Ralf Gernhardt
- University Outpatient Clinic for Conservative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
| |
Collapse
|
5
|
Alyami R, Alshehri FA, Al Jasser R, Shaheen S, Mahmood A, Elsafadi MA. Vitamin C stimulates RNA expression of human gingival fibroblasts proliferation and adhesion in cigarette smokers: An in vitro study. Saudi Dent J 2022; 34:298-305. [PMID: 35692237 PMCID: PMC9177866 DOI: 10.1016/j.sdentj.2022.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Smoking and the severity of periodontal disease have long been associated. In Saudi Arabia, tobacco smoking is rising, contributing to the increased demand for products that counter its detrimental effects. The antioxidant properties of vitamin C (vit C) make it a powerful countermeasure to tobacco toxicity. Observation of these effects on human gingival fibroblasts (hGFs) would suggest use of vitamin C in future dental applications. Aim To examine the proliferation, adhesion, and expression of extracellular RNA in human gingival fibroblasts extracted from cigarette smokers when compared to never-smokers, in association with vitamin C. Materials and Methods Human gingival fibroblasts were extracted from Periodontal free sites of healthy adult male participants. Group 1; consisted of Heavy cigarette smokers (n = 1) while group 2 was never-smokers (n = 1). Collected cells were cultured and subcultured in supplemented growth medium. Vitamin C was then induced in the medium at the experimental sixth passage. RNA expression analysis using quantitative reverse transcriptase-polymerase chain reaction was performed to analyze the adhesion, proliferation, and extracellular matrix expression. Results Expression of the adhesion gene (CD44) in the smoker group was significantly downregulated than never-smoker group (p-value = 0.024). After the induction of vitamin C, the smoker samples showed a significant improvement in their gene expression levels. The extracellular genes involved in this study (COL1A1, LAMA3, and TGFB3) were significantly affected by the smoking status. In addition, the proliferation of MK167 and CCNB1 genes in smokers and never-smokers was increased. Conclusion Cigarette smoking affects the overall properties of human gingival fibroblasts’ adhesion, proliferation, and extra-cellular matrix formation. Furthermore, the addition of vitamin C affects these cellular properties in a positive manner.
Collapse
Affiliation(s)
- Ruaa Alyami
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Fahad Ali Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Reham Al Jasser
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sameerah Shaheen
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mona Ahmed Elsafadi
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Alenabi A, Behfar M, Malekinejad H, Tehrani AA. Allotransplantation of ascorbic acid-treated fibroblasts improves healing of excisional cutaneous wound in diabetic rats. Acta Histochem 2022; 124:151857. [PMID: 35063820 DOI: 10.1016/j.acthis.2022.151857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to evaluate the effects of ascorbic acid (AA)-treated fibroblasts transplantation on excisional diabetic wound healing. An excisional wound was created between the shoulders of streptozotocin-induced diabetic rats. On day three, 1 ml of PBS, 1 × 106 intact homologous fibroblasts, and 1 × 106 fibroblasts treated with 50 μM AA were injected subcutaneously around the wound edges in control, treatment-1 and treatment-2 groups, respectively. In the sham group, the wound was left intact. Wound area was measured by planimetry. On day 15, samples were harvested for histopathological examination and hydroxyproline content. Wound area in treatment-1 and - 2 groups was significantly decreased compared to other groups, on days 11 and 15. The hydroxyproline content was significantly lower in the control group compared to the other groups. Histopathology revealed significant increases in the number of neovessels, macrophages, lymphocytes and fibroblasts in the treatment-2 group compared to the other groups. Trichrome staining showed the highest level of collagen deposition and orientation in the treatment-2 group. In conclusion, allotransplantation of 50 μM AA-treated fibroblasts could result in progressive healing and improved reparative indices of excisional dermal wound in diabetic rats.
Collapse
Affiliation(s)
- Aylar Alenabi
- DVM Graduate, Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Mehdi Behfar
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ali-Asghar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
7
|
Fawzy El-Sayed KM, Bittner A, Schlicht K, Mekhemar M, Enthammer K, Höppner M, Es-Souni M, Schulz J, Laudes M, Graetz C, Dörfer CE, Schulte DM. Ascorbic Acid/Retinol and/or Inflammatory Stimuli's Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells. Cells 2021; 10:cells10123310. [PMID: 34943818 PMCID: PMC8699152 DOI: 10.3390/cells10123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.
Collapse
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence:
| | - Amira Bittner
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Martha Es-Souni
- Department of Orthodontics, School of Dental Medicine, University Clinic Schleswig-Holstein (UKSH), Christian-Albrechts University of Kiel, 24105 Kiel, Germany;
| | - Juliane Schulz
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
8
|
El-Mouelhy ATM, Nasry SA, Abou El-Dahab O, Sabry D, Fawzy El-Sayed K. In vitro evaluation of the effect of the electronic cigarette aerosol, Cannabis smoke, and conventional cigarette smoke on the properties of gingival fibroblasts/gingival mesenchymal stem cells. J Periodontal Res 2021; 57:104-114. [PMID: 34748642 DOI: 10.1111/jre.12943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The current study aimed to evaluate the effect of electronic cigarette (EC) aerosol, Cannabis, and conventional cigarettes smoke on gingival fibroblast/gingival mesenchymal stem cells' (GF/G-MSCs) of never smokers. MATERIAL AND METHODS Human GF/G-MSCs (n = 32) were isolated and characterized using light microscopy, flow cytometry, and multilineage differentiation ability. Following the application of aerosol/smoke extracts, GF/G-MSCs were evaluated for cellular proliferation; colony-forming units (CFU-F) ability; cellular viability (using the MTT assay); mitochondrial depolarization using JC-1 dye; and genes' expression of ATM, p21, Oct4, and Nanog. RESULTS Colony-forming units and viability (OD 450 nm) were significantly reduced upon exposure to Cannabis (mean ± SD; 5.5 ± 1.5; p < .00001, 0.47 ± 0.21; p < .05) and cigarettes smoke (2.3 ± 1.2 p < .00001, 0.59 ± 0.13, p < .05), while EC aerosol showed no significant reduction (10.8 ± 2.5; p = .05, 1.27 ± 0.47; p > .05) compared to the control group (14.3 ± 3, 1.33 ± 0.12). Significantly upregulated expression of ATM, Oct4, and Nanog (gene copies/GADPH) was noticed with Cannabis (1.5 ± 0.42, 0.82 ± 0.44, and 1.54 ± 0.52, respectively) and cigarettes smoke (1.52 ± 0.75, 0.7 ± 0.14, and 1.48 ± 0.79, respectively; p < .05), whereas EC aerosol caused no statistically significant upregulation of these genes compared to the control group (0.63 ± 0.1, 0.31 ± 0.12, and 0.64 ± 0.46, respectively; p > .05). The p21 gene was not significantly downregulated in EC aerosol (1.22 ± 0.46), Cannabis (0.71 ± 0.24), and cigarettes smokes (0.83 ± 0.54) compared to the control group (p = .053, analysis of variance). CONCLUSION Cannabis and cigarettes smoke induce DNA damage and cellular dedifferentiation and negatively affect the cellular proliferation and viability of GF/G-MSCs of never smokers, whereas EC aerosol showed a significantly lower impact on these properties.
Collapse
Affiliation(s)
- Abir Tarek Mansour El-Mouelhy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Department of Surgery and Oral Medicine, National Research Centre, Cairo, Egypt
| | - Sherine Adel Nasry
- Department of Surgery and Oral Medicine, National Research Centre, Cairo, Egypt
| | - Omnia Abou El-Dahab
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt.,Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University, Cairo, Egypt
| | - Karim Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Stem Cell and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt.,Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany
| |
Collapse
|
9
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
10
|
Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine - A Comprehensive Review. Front Immunol 2021; 12:667221. [PMID: 33936109 PMCID: PMC8085523 DOI: 10.3389/fimmu.2021.667221] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
A unique subpopulation of mesenchymal stem cells (MSCs) has been isolated and characterized from human gingival tissues (GMSCs). Similar to MSCs derived from other sources of tissues, e.g. bone marrow, adipose or umbilical cord, GMSCs also possess multipotent differentiation capacities and potent immunomodulatory effects on both innate and adaptive immune cells through the secretion of various types of bioactive factors with immunosuppressive and anti-inflammatory functions. Uniquely, GMSCs are highly proliferative and have the propensity to differentiate into neural cell lineages due to the neural crest-origin. These properties have endowed GMSCs with potent regenerative and therapeutic potentials in various preclinical models of human disorders, particularly, some inflammatory and autoimmune diseases, skin diseases, oral and maxillofacial disorders, and peripheral nerve injuries. All types of cells release extracellular vesicles (EVs), including exosomes, that play critical roles in cell-cell communication through their cargos containing a variety of bioactive molecules, such as proteins, nucleic acids, and lipids. Like EVs released by other sources of MSCs, GMSC-derived EVs have been shown to possess similar biological functions and therapeutic effects on several preclinical diseases models as GMSCs, thus representing a promising cell-free platform for regenerative therapy. Taken together, due to the easily accessibility and less morbidity of harvesting gingival tissues as well as the potent immunomodulatory and anti-inflammatory functions, GMSCs represent a unique source of MSCs of a neural crest-origin for potential application in tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Dane Kim
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alisa E Lee
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qilin Xu
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anh D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Elbehwashy MT, Hosny MM, Elfana A, Nawar A, Fawzy El-Sayed K. Clinical and radiographic effects of ascorbic acid-augmented platelet-rich fibrin versus platelet-rich fibrin alone in intra-osseous defects of stage-III periodontitis patients: a randomized controlled clinical trial. Clin Oral Investig 2021; 25:6309-6319. [PMID: 33842996 PMCID: PMC8531044 DOI: 10.1007/s00784-021-03929-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Aim To assess platelet-rich fibrin (PRF) with ascorbic acid (AA) versus PRF in intra-osseous defects of stage-III periodontitis patients. Methodology Twenty stage-III/grade C periodontitis patients, with ≥ 3 mm intra-osseous defects, were randomized into test (open flap debridement (OFD)+AA/PRF; n = 10) and control (OFD+PRF; n = 10). Clinical attachment level (CAL; primary outcome), probing pocket depth (PPD), gingival recession depth (RD), full-mouth bleeding scores (FMBS), full-mouth plaque scores (FMPS), radiographic linear defect depth (RLDD) and radiographic defect bone density (RDBD) (secondary-outcomes) were examined at baseline, 3 and 6 months post-surgically. Results OFD+AA/PRF and OFD+PRF demonstrated significant intragroup CAL gain and PPD reduction at 3 and 6 months (p < 0.001). OFD+AA/PRF and OFD+PRF showed no differences regarding FMBS or FMPS (p > 0.05). OFD+AA/PRF demonstrated significant RD reduction of 0.90 ± 0.50 mm and 0.80 ± 0.71 mm at 3 and 6 months, while OFD+PRF showed RD reduction of 0.10 ± 0.77 mm at 3 months, with an RD-increase of 0.20 ± 0.82 mm at 6 months (p < 0.05). OFD+AA/PRF and OFD+PRF demonstrated significant RLDD reduction (2.29 ± 0.61 mm and 1.63 ± 0.46 mm; p < 0.05) and RDBD-increase (14.61 ± 5.39% and 12.58 ± 5.03%; p > 0.05). Stepwise linear regression analysis showed that baseline RLDD and FMBS at 6 months were significant predictors of CAL reduction (p < 0.001). Conclusions OFD+PRF with/without AA significantly improved periodontal parameters 6 months post-surgically. Augmenting PRF with AA additionally enhanced gingival tissue gain and radiographic defect fill. Clinical relevance PRF, with or without AA, could significantly improve periodontal parameters. Supplementing PRF with AA could additionally augment radiographic linear defect fill and reduce gingival recession depth. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-03929-1.
Collapse
Affiliation(s)
- Mohamed Talaat Elbehwashy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Al Saraya Str. 11, Manial, Cairo, Egypt
| | - Manal Mohamed Hosny
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Al Saraya Str. 11, Manial, Cairo, Egypt
| | - Ahmed Elfana
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Al Saraya Str. 11, Manial, Cairo, Egypt
| | - Alaa Nawar
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Karim Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Al Saraya Str. 11, Manial, Cairo, Egypt.
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany.
| |
Collapse
|
12
|
Jara N, Ramirez E, Ferrada L, Salazar K, Espinoza F, González-Chavarría I, Nualart F. Vitamin C deficient reduces proliferation in a human periventricular tumor stem cell-derived glioblastoma model. J Cell Physiol 2021; 236:5801-5817. [PMID: 33432597 DOI: 10.1002/jcp.30264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a median survival of 14.6 months. GBM is highly resistant to radio- and chemotherapy, and remains without a cure; hence, new treatment strategies are constantly sought. Vitamin C, an essential micronutrient and antioxidant, was initially described as an antitumor molecule; however, several studies have shown that it can promote tumor progression and angiogenesis. Thus, considering the high concentrations of vitamin C present in the brain, our aim was to study the effect of vitamin C deficiency on the progression of GBM using a GBM model generated by the stereotactic injection of human GBM cells (U87-MG or HSVT-C3 cells) in the subventricular zone of guinea pig brain. Initial characterization of U87-MG and HSVT-C3 cells showed that HSVT-C3 are highly proliferative, overexpress p53, and are resistant to ferroptosis. To induce intraperiventricular tumors, animals received control or a vitamin C-deficient diet for 3 weeks, after which histopathological and confocal microscopy analyses were performed. We demonstrated that the vitamin C-deficient condition reduced the glomeruloid vasculature and microglia/macrophage infiltration in U87-MG tumors. Furthermore, tumor size, proliferation, glomeruloid vasculature, microglia/macrophage infiltration, and invasion were reduced in C3 tumors carried by vitamin C-deficient guinea pigs. In conclusion, the effect of the vitamin C deficiency was dependent on the tumor cell used for GBM induction. HSVT-C3 cells, a cell line with stem cell features isolated from a human subventricular GBM, showed higher sensitivity to the deficient condition; however, vitamin C deficiency displayed an antitumor effect in both GBM models analyzed.
Collapse
Affiliation(s)
- Nery Jara
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Eder Ramirez
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Francisca Espinoza
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Iván González-Chavarría
- Department of Pathophysiology, Laboratory of Biotechnology and Biopharmaceuticals, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
13
|
Ascorbic Acid, Inflammatory Cytokines (IL-1 β/TNF- α/IFN- γ), or Their Combination's Effect on Stemness, Proliferation, and Differentiation of Gingival Mesenchymal Stem/Progenitor Cells. Stem Cells Int 2020; 2020:8897138. [PMID: 32879629 PMCID: PMC7448213 DOI: 10.1155/2020/8897138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Ascorbic acid (AA) and controlled inflammatory stimuli are postulated to possess the ability to independently exert positive effects on a variety of proliferative, pluripotency, and differentiation attributes of gingival mesenchymal stem/progenitor cells (G-MSCs). The current study's objective was to explore and compare for the first time the impact of the major inflammatory cytokines (IL-1β/TNF-α/IFN-γ), AA, or their combination on multipotency/pluripotency, proliferative, and differentiation characteristics of G-MSCs. Design Human G-MSCs (n = 5) were isolated and cultured in basic medium (control group), in basic medium with major inflammatory cytokines; 1 ng/ml IL-1β, 10 ng/ml TNF-α, and 100 ng/ml IFN-γ (inflammatory group), in basic medium with 250 μmol/l AA (AA group) and in inflammatory medium supplemented by AA (inflammatory/AA group). All media were renewed three times per week. In stimulated G-MSCs intracellular β-catenin at 1 hour, pluripotency gene expression at 1, 3, and 5 days, as well as colony-forming units (CFUs) ability and cellular proliferation over 14 days were examined. Following a five-days stimulation in the designated groups, multilineage differentiation was assessed via qualitative and quantitative histochemistry as well as mRNA expression. Results β-Catenin significantly decreased intracellularly in all experimental groups (p = 0.002, Friedman). AA group exhibited significantly higher cellular counts on days 3, 6, 7, and 13 (p < 0.05) and the highest CFUs at 14 days [median-CFUs (Q25/Q75); 40 (15/50), p = 0.043]. Significantly higher Nanog expression was noted in AA group [median gene-copies/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0007), p < 0.01, Wilcoxon-signed-rank]. Significant multilineage differentiation abilities, especially into osteogenic and chondrogenic directions, were further evident in the AA group. Conclusions AA stimulation enhances G-MSCs' stemness, proliferation, and differentiation properties, effects which are associated with a Wnt/β-catenin signaling pathway activation. Apart from initially boosting cellular metabolism as well as Sox2 and Oct4A pluripotency marker expression, inflammation appeared to attenuate these AA-induced positive effects. Current results reveal that for AA to exert its beneficial effects on G-MSCs' cellular attributes, it requires to act in an inflammation-free microenvironment.
Collapse
|
14
|
Przybyło M, Langner M. On the physiological and cellular homeostasis of ascorbate. Cell Mol Biol Lett 2020; 25:32. [PMID: 32514268 PMCID: PMC7257198 DOI: 10.1186/s11658-020-00223-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent interest in the role of ascorbate in crucial metabolic processes is driven by the growing number of medical reports that show beneficial effects of ascorbate supplementation for maintaining general well-being and recovery from a variety of medical conditions. The effect of ascorbate on the local body environment highly depends on its local concentration; at low concentrations it can cause the reduction of reactive oxygen and facilitate activities of enzymes, while at high concentrations it generates free radicals by reducing ferric ions. Ascorbate serving as an electron donor assists the iron-containing proteins and the iron transfer between various aqueous compartments. These functions require effective and adjustable mechanisms responsible for ascorbate biodistribution. In the paper we propose a new biophysical model of ascorbate redistribution between various aqueous body compartments. It combines recent experimental evidence regarding the ability of ascorbate to cross the lipid bilayer by unassisted diffusion, with active transport by well-characterized sodium vitamin C transporter (SVCT) membrane proteins. In the model, the intracellular concentration of ascorbate is maintained by the balance of two opposing fluxes: fast active and slow passive transport. The model provides a mechanistic understanding of ascorbate flux across the epidermal barrier in the gut as well as the role of astrocytes in ascorbate recycling in the brain. In addition, ascorbate passive diffusion across biological membranes, which depends on membrane electric potentials and pH gradients, provides the rationale for the correlation between ascorbate distribution and the transfer of iron ions inside a cell. The proposed approach provides, for the first time, a mechanistic account of processes leading to ascorbate physiological and cellular distribution, which helps to explain numerous experimental and clinical observations.
Collapse
Affiliation(s)
- Magdalena Przybyło
- Faculty of Biomedical Engineering, Wrocław University of Sciences and Technology, 50-370 Wrocław, Poland
- Lipid Systems Ltd, Krzemieniecka 48C, 54-613 Wrocław, Poland
| | - Marek Langner
- Faculty of Biomedical Engineering, Wrocław University of Sciences and Technology, 50-370 Wrocław, Poland
- Lipid Systems Ltd, Krzemieniecka 48C, 54-613 Wrocław, Poland
| |
Collapse
|
15
|
Zhao B, Zhang Y, Xiong Y, Xu X. Rutin promotes the formation and osteogenic differentiation of human periodontal ligament stem cell sheets in vitro. Int J Mol Med 2019; 44:2289-2297. [PMID: 31661130 PMCID: PMC6844602 DOI: 10.3892/ijmm.2019.4384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Cell sheet technology is a novel tissue engineering technology that has been rapidly developed in recent years. As a novel technology, cell sheet technology is expected to become one of the preferred methods for cell transplantation. The present study investigated the biological effects of rutin on the formation of periodontal ligament stem cell (PDLSC) sheets and their resultant osteogenic properties. The results of Cell Counting Kit-8 (CCK-8) assay demonstrated that a concentration of 1×10−6 mol/l rutin promoted the proliferation of PDLSCs more effectively compared with other designed concentrations. Rutin-modified cell sheets could be induced by complete medium supplemented with 20 µg/ml vitamin C (VC) and 1×10−6 mol/l rutin. Rutin-modified cell sheets appeared thicker and more compact compared with the VC-induced PDLSC sheets, demonstrating more layers of cells (3 or 4 layers), which secreted a richer extracellular matrix (ECM). Furthermore, the improved cell sheets exhibited varying degrees of increases in the mRNA and protein expression of collagen type I (COL1), alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteopontin (OPN). Combined treatment with VC and rutin promoted the formation of PDLSC sheets and enhanced the osteogenic differentiation potential of the cell sheets. Therefore, rutin-modified cell sheets of PDLSCs are expected to play an important role in the treatment of periodontal tissue regeneration by stem cells.
Collapse
Affiliation(s)
- Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018; 7:cells7050036. [PMID: 29723979 PMCID: PMC5981260 DOI: 10.3390/cells7050036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that can differentiate to various specialized cells, which have the potential capacity to differentiate properly and accelerate recovery in damaged sites of the body. This stem cell technology has become the fundamental element in regenerative medicine. As reactive oxygen species (ROS) have been reported to adversely influence stem cell properties, it is imperative to attenuate the extent of ROS to the promising protective approach with MSCs’ regenerative therapy. Oxidative stress also affects the culture expansion and longevity of MSCs. Therefore, there is great need to identify a method to prevent oxidative stress and replicative senescence in MSCs. Phosphatase and tensin homologue deleted on chromosome 10/Protein kinase B, PKB (PTEN/AKT) and the tumor suppressor p53 pathway have been proven to play a pivotal role in regulating cell apoptosis by regulating the oxidative stress and/or ROS quenching. In this review, we summarize the current research and our view of how PTEN/AKT and p53 with their partners transduce signals downstream, and what the implications are for MSCs’ biology.
Collapse
|
17
|
Soancă A, Lupse M, Moldovan M, Pall E, Cenariu M, Roman A, Tudoran O, Surlin P, Șorițău O. Applications of inflammation-derived gingival stem cells for testing the biocompatibility of dental restorative biomaterials. Ann Anat 2018; 218:28-39. [PMID: 29604386 DOI: 10.1016/j.aanat.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Normal or inflamed gingival tissues are regarded as a source of mesenchymal stem cells (MSCs) abundant and easily accessible through minimally invasive dental procedures. Due to the proximity of dental resin composites to gingival tissues and to the possible local cytotoxic effect of the eluted components, gingiva-derived MSCs could be used to investigate the biocompatibility of dental biomaterials. PURPOSE The present research aimed to isolate (MSCs) from inflamed and normal gingiva, to fully characterize them and to observe their behavior in relation with some commercial resin composite materials and one experimental material. MATERIAL AND METHODS Following their isolation, putative MSCs from both gingival sources were grown under the same culture conditions and characterized by immunophenotyping of cell surface antigens by flow-cytometry and transcription factors by immunocytochemical staining. Moreover, stemness gene expression was evaluated by RT-PCR analysis. Multipotent mesenchymal differentiation potential was investigated. Osteogenic and neurogenic differentiated cells were highlighted by immunocytochemical staining, chondrogenic cells by cytochemical staining, and adipocytes by cytochemical staining and spectrophotometry, respectively. Resin composite cytotoxicity was evaluated by cell membrane fluorescent labeling with PKH 26 and MTT assay. The results of PKH labeling were statistically analysed using two-way RM ANOVA with Bonferroni post-tests. For MTT assay, two-way RM ANOVA with Bonferroni post-tests and unpaired t test with Welch's correction were used. RESULTS A similar expression pattern of surface markers was observed. The cells were positive for CD105, CD73, CD90, CD49e, CD29, CD44 and CD166 and negative for CD45, CD34, CD14, CD79, HLA-DR and CD117 indicating a mesenchymal stem cell phenotype. The qRT-PCR analysis revealed a low gene expression for NOG, BMP4 and Oct3/4 and an increased expression for Nanog in both cells lines. Immunocytochemical analysis highlighted a more intense protein expression for Nanog, Oct3/4 and Sox-2 in MSCs derived from normal gingiva than from inflamed gingiva. Multipotent differentiation capacity of MSCs isolated from both sources was highlighted. The tested materials had no hazardous effect on MSCs as the two cell lines developed well onto resin composite substrates. Cell counting revealed some significant differences in the number of PKH-labeled MSCs at some experimental moments. Also, some differences in cell viability were recorded indicating better developmental conditions offered by some of the tested biomaterials. CONCLUSIONS The experimental resin composite behaved like the most biocompatible commercial material. Inflamed gingiva-derived MSCs retain their stem cell properties and could be used as a valuable cell line for testing dental biomaterials.
Collapse
Affiliation(s)
- A Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 15 V. Babeş St., 400012 Cluj-Napoca, Romania
| | - M Lupse
- Department of Infectious Diseases, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Iuliu Moldovan St., 400349 Cluj-Napoca, Romania
| | - M Moldovan
- Raluca Ripan Institute for Research in Chemistry, Babes-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - E Pall
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - M Cenariu
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - A Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 15 V. Babeş St., 400012 Cluj-Napoca, Romania.
| | - O Tudoran
- Department of Functional Genomics and Experimental Pathology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii St., 400015 Cluj-Napoca, Romania
| | - P Surlin
- Department of Periodontology, University of Medicine and Pharmacy, 2 Petru Rareş St., 200349 Craiova, Romania
| | - O Șorițău
- Laboratory of Radiotherapy, Tumor and Radiobiology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii St., 400015 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Rodas-Junco BA, Canul-Chan M, Rojas-Herrera RA, De-la-Peña C, Nic-Can GI. Stem Cells from Dental Pulp: What Epigenetics Can Do with Your Tooth. Front Physiol 2017; 8:999. [PMID: 29270128 PMCID: PMC5724083 DOI: 10.3389/fphys.2017.00999] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells have attracted scientific attention because they are able to self-renew and differentiate into several specialized cell types. In this context, human dental tissue-derived mesenchymal stem cells (hDT-MSCs) have emerged as a possible solution for repairing or regenerating damaged tissues. These cells can be isolated from primary teeth that are naturally replaced, third molars, or other dental tissues and exhibit self-renewal, a high proliferative rate and a great multilineage potential. However, the cellular and molecular mechanisms that determine lineage specification are still largely unknown. It is known that a change in cell fate requires the deletion of existing transcriptional programs, followed by the establishment of a new developmental program to give rise to a new cell lineage. Increasing evidence indicates that chromatin structure conformation can influence cell fate. In this way, reversible chemical modifications at the DNA or histone level, and combinations thereof can activate or inactivate cell-type-specific gene sequences, giving rise to an alternative cell fates. On the other hand, miRNAs are starting to emerge as a possible player in establishing particular somatic lineages. In this review, we discuss two new and promising research fields in medicine and biology, epigenetics and stem cells, by summarizing the properties of hDT-MSCs and highlighting the recent findings on epigenetic contributions to the regulation of cellular differentiation.
Collapse
Affiliation(s)
- Beatriz A Rodas-Junco
- CONACYT-Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Michel Canul-Chan
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Rafael A Rojas-Herrera
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Geovanny I Nic-Can
- CONACYT-Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| |
Collapse
|
19
|
Tan SWS, Lee QY, Wong BSE, Cai Y, Baeg GH. Redox Homeostasis Plays Important Roles in the Maintenance of the Drosophila Testis Germline Stem Cells. Stem Cell Reports 2017; 9:342-354. [PMID: 28669604 PMCID: PMC5511110 DOI: 10.1016/j.stemcr.2017.05.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress influences stem cell behavior by promoting the differentiation, proliferation, or apoptosis of stem cells. Thus, characterizing the effects of reactive oxygen species (ROS) on stem cell behavior provides insights into the significance of redox homeostasis in stem cell-associated diseases and efficient stem cell expansion for cellular therapies. We utilized the Drosophila testis as an in vivo model to examine the effects of ROS on germline stem cell (GSC) maintenance. High levels of ROS induced by alteration in Keap1/Nrf2 activity decreased GSC number by promoting precocious GSC differentiation. Notably, high ROS enhanced the transcription of the EGFR ligand spitz and the expression of phospho-Erk1/2, suggesting that high ROS-mediated GSC differentiation is through EGFR signaling. By contrast, testes with low ROS caused by Keap1 inhibition or antioxidant treatment showed an overgrowth of GSC-like cells. These findings suggest that redox homeostasis regulated by Keap1/Nrf2 signaling plays important roles in GSC maintenance. Germline stem cell homeostasis in the Drosophila testis is susceptible to ROS levels Oxidative stress decreases germline stem cell number by promoting differentiation EGFR signaling is involved in precocious GSC differentiation caused by high ROS levels Low levels of ROS can promote a growth of germline stem cells
Collapse
Affiliation(s)
- Sharon Wui Sing Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117594, Singapore
| | - Qian Ying Lee
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117594, Singapore
| | - Belinda Shu Ee Wong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117594, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117594, Singapore.
| |
Collapse
|
20
|
Hao Y, Wang G, Lin C, Li D, Ji Z, Gao F, Li Z, Liu D, Wang D. Valproic Acid Induces Decreased Expression of H19 Promoting Cell Apoptosis in A549 Cells. DNA Cell Biol 2017; 36:428-435. [PMID: 28328238 DOI: 10.1089/dna.2016.3542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been suggested that the imprinted gene, H19, plays a crucial role in the development of cancer. In the present study, we attempted to treat the abnormal expression and methylation status of H19 in A549 cells using valproic acid (VPA), ascorbic acid (Vc), and 5-aza-Cytidine (5-Aza). The results suggested that VPA administration could alter the expression pattern of H19, while the hypomethylation status of H19 DMR was unchanged. Furthermore, overexpression of HDAC1 and DNMT1 was associated with decreased expression of H19 in VPA-treated cells. Western blot results showed that the expression of p53 protein was increased following treatment with VPA. In addition, we also investigated cellular apoptosis and the cell cycle of treated cells. Flow cytometry data indicated that VPA could increase the occurrence of cell apoptosis in A549 cells. Taken together, our results suggest that H19 expression was suppressed by VPA through HDAC1 and DNMT1 and decreased H19 expression correlated with cell apoptosis in A549 cells.
Collapse
Affiliation(s)
- Yang Hao
- 1 Laboratory Animal Center, College of Animal Science, Jilin University , Changchun, China
| | - Guodong Wang
- 1 Laboratory Animal Center, College of Animal Science, Jilin University , Changchun, China
| | - Chao Lin
- 2 Department of Emergency, First Hospital, Jilin University , Changchun, China
| | - Dong Li
- 3 Department of Immunology, College of Basic Medical Science, Jilin University , Changchun, China
| | - Zhonghao Ji
- 1 Laboratory Animal Center, College of Animal Science, Jilin University , Changchun, China
| | - Fei Gao
- 1 Laboratory Animal Center, College of Animal Science, Jilin University , Changchun, China
| | - Zhanjun Li
- 1 Laboratory Animal Center, College of Animal Science, Jilin University , Changchun, China
| | - Dianfeng Liu
- 1 Laboratory Animal Center, College of Animal Science, Jilin University , Changchun, China
| | - Dongxu Wang
- 1 Laboratory Animal Center, College of Animal Science, Jilin University , Changchun, China
| |
Collapse
|
21
|
Chen J, Lan J, Liu D, Backman LJ, Zhang W, Zhou Q, Danielson P. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea. Stem Cells Transl Med 2017; 6:1356-1365. [PMID: 28276172 PMCID: PMC5442716 DOI: 10.1002/sctm.16-0441] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/20/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved. Stem Cells Translational Medicine2017;6:1356–1365
Collapse
Affiliation(s)
- Jialin Chen
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Jie Lan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Dongle Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Wei Zhang
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden.,Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells Int 2016; 2016:7154327. [PMID: 27313628 PMCID: PMC4903147 DOI: 10.1155/2016/7154327] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
The human gingiva, characterized by its outstanding scarless wound healing properties, is a unique tissue and a pivotal component of the periodontal apparatus, investing and surrounding the teeth in their sockets in the alveolar bone. In the last years gingival mesenchymal stem/progenitor cells (G-MSCs), with promising regenerative and immunomodulatory properties, have been isolated and characterized from the gingival lamina propria. These cells, in contrast to other mesenchymal stem/progenitor cell sources, are abundant, readily accessible, and easily obtainable via minimally invasive cell isolation techniques. The present review summarizes the current scientific evidence on G-MSCs' isolation, their characterization, the investigated subpopulations, the generated induced pluripotent stem cells- (iPSC-) like G-MSCs, their regenerative properties, and current approaches for G-MSCs' delivery. The review further demonstrates their immunomodulatory properties, the transplantation preconditioning attempts via multiple biomolecules to enhance their attributes, and the experimental therapeutic applications conducted to treat multiple diseases in experimental animal models in vivo. G-MSCs show remarkable tissue reparative/regenerative potential, noteworthy immunomodulatory properties, and primary experimental therapeutic applications of G-MSCs are very promising, pointing at future biologically based therapeutic techniques, being potentially superior to conventional clinical treatment modalities.
Collapse
|