5
|
Liang J, Cade BE, He KY, Wang H, Lee J, Sofer T, Williams S, Li R, Chen H, Gottlieb DJ, Evans DS, Guo X, Gharib SA, Hale L, Hillman DR, Lutsey PL, Mukherjee S, Ochs-Balcom HM, Palmer LJ, Rhodes J, Purcell S, Patel SR, Saxena R, Stone KL, Tang W, Tranah GJ, Boerwinkle E, Lin X, Liu Y, Psaty BM, Vasan RS, Cho MH, Manichaikul A, Silverman EK, Barr RG, Rich SS, Rotter JI, Wilson JG, Redline S, Zhu X. Sequencing Analysis at 8p23 Identifies Multiple Rare Variants in DLC1 Associated with Sleep-Related Oxyhemoglobin Saturation Level. Am J Hum Genet 2019; 105:1057-1068. [PMID: 31668705 PMCID: PMC6849112 DOI: 10.1016/j.ajhg.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Average arterial oxyhemoglobin saturation during sleep (AvSpO2S) is a clinically relevant measure of physiological stress associated with sleep-disordered breathing, and this measure predicts incident cardiovascular disease and mortality. Using high-depth whole-genome sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) project and focusing on genes with linkage evidence on chromosome 8p23,1,2 we observed that six coding and 51 noncoding variants in a gene that encodes the GTPase-activating protein (DLC1) are significantly associated with AvSpO2S and replicated in independent subjects. The combined DLC1 association evidence of discovery and replication cohorts reaches genome-wide significance in European Americans (p = 7.9 × 10-7). A risk score for these variants, built on an independent dataset, explains 0.97% of the AvSpO2S variation and contributes to the linkage evidence. The 51 noncoding variants are enriched in regulatory features in a human lung fibroblast cell line and contribute to DLC1 expression variation. Mendelian randomization analysis using these variants indicates a significant causal effect of DLC1 expression in fibroblasts on AvSpO2S. Multiple sources of information, including genetic variants, gene expression, and methylation, consistently suggest that DLC1 is a gene associated with AvSpO2S.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Karen Y He
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Williams
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruitong Li
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; VA Boston Healthcare System, Boston, MA 02132, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA; Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Sina A Gharib
- Department of Medicine, Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, University of Washington, Seattle, WA 98195, USA
| | - Lauren Hale
- Family, Population, and Preventive Medicine, Program in Public Health, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - David R Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia 6009, Australia
| | - Pamela L Lutsey
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia 5042, Australia; Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Lyle J Palmer
- School of Public Health, University of Adelaide, South Australia 5000, Australia
| | - Jessica Rhodes
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA(19)Center for Genomic Medicine and Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shaun Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Sanjay R Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA(19)Center for Genomic Medicine and Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA 98101, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA 01702, USA; Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Section Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, Biostatistics Section, University of Virginia, Charlottesville, VA 22908, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA; Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX. Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 2019; 12:1539-1552. [PMID: 30881011 PMCID: PMC6398418 DOI: 10.2147/ott.s191317] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human breast cancer is one of the most frequent cancer diseases and causes of death among female population worldwide. It appears at a high incidence and has a high malignancy, mortality, recurrence rate and poor prognosis. Caveolin-1 (Cav1) is the main component of caveolae and participates in various biological events. More and more experimental studies have shown that Cav1 plays a critical role in the progression of breast cancer including cell proliferation, apoptosis, autophagy, invasion, migration and breast cancer metastasis. Besides, Cav1 has been found to be involved in chemotherapeutics and radiotherapy resistance, which are still the principal problems encountered in clinical breast cancer treatment. In addition, stromal Cav1 may be a potential indicator for breast cancer patients' prognosis. In the current review, we cover the state-of-the-art study, development and progress on Cav1 and breast cancer, altogether describing the role of Cav1 in breast cancer progression and application in clinical treatment, in the hope of providing a basis for further research and promoting CAV1 gene as a potential target to diagnose and treat aggressive breast cancers.
Collapse
Affiliation(s)
- Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi-Hang Pan
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Zhen-Zhen Hu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| |
Collapse
|
7
|
Contis-Montes de Oca A, Rodarte-Valle E, Rosales-Hernández MC, Abarca-Rojano E, Rojas-Hernández S, Fragoso-Vázquez MJ, Mendieta-Wejebe JE, Correa-Basurto AM, Vázquez-Moctezuma I, Correa-Basurto J. N-(2'-Hydroxyphenyl)-2-propylpentanamide (OH-VPA), a histone deacetylase inhibitor, induces the release of nuclear HMGB1 and modifies ROS levels in HeLa cells. Oncotarget 2018; 9:33368-33381. [PMID: 30279967 PMCID: PMC6161798 DOI: 10.18632/oncotarget.26077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
N-(2'-Hydroxyphenyl)-2-propylpentanamide (OH-VPA) is a valproic acid (VPA) derivative with improved antiproliferative activity toward breast cancer (MCF-7, MDA-MB-231, and SKBr3) and human cervical cancer cell lines (HeLa) compared to that of VPA. However, the pharmacological mechanism of OH-VPA activity remains unknown. High-mobility group box 1 (HMGB1) is an important enzyme that is highly expressed in tumor cells and has a subcellular localization that is dependent on its acetylation or oxidative state. Therefore, in this study, we analyzed changes in HMGB1 sub-cellular localization and reactive oxygen species (ROS) as well as changes in HeLa cell viability in response to treatment with various concentrations of OH-VPA. This compound is formed by the covalent bond coupling VPA to a phenol group, which is capable of acting as a free radical scavenger due to its chemical similarities to quercetin. Our results show that OH-VPA induces nuclear to cytoplasmic translocation of HMGB1, as demonstrated by confocal microscopy observations and infrared spectra that revealed high quantities of acetylated HMGB1 in HeLa cells. Cells treated with 0.8 mM OH-VA exhibited decreased viability and increased ROS levels compared with the lower OH-VPA concentrations tested. Therefore, the antiproliferative mechanism of OH-VPA may be related to histone deacetylase (HDAC) inhibition, as is the case for VPA, which promotes high HMBG1 acetylation, which alters its subcellular localization. In addition, OH-VPA generates an imbalance in cellular ROS levels due to its biochemical activity.
Collapse
Affiliation(s)
- Arturo Contis-Montes de Oca
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Estefanía Rodarte-Valle
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Edgar Abarca-Rojano
- Laboratorio de Respiración Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Manuel Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Jessica Elena Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ana María Correa-Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ismael Vázquez-Moctezuma
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Modelado Molecular y Bioinformática y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|