1
|
Wei X, Liu S, Chen K, Wang M, Wang Y, Zou D, Xiao Y. Knockdown of BMP7 induced oligodendrocyte apoptosis, demyelination and motor function loss. Mol Cell Neurosci 2024; 131:103973. [PMID: 39332617 DOI: 10.1016/j.mcn.2024.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Demyelinating diseases, including multiple sclerosis (MS) and spinal cord injury (SCI), lead to significant neurological deficits primarily due to the loss of oligodendrocytes (OLs). Bone Morphogenetic Protein 7 (BMP7) is expressed abundantly in the central nervous system and previous studies showed its protective effect in reducing OL loss. In this study, we aim to explore BMP7's potential as a biomarker and therapeutic target for demyelinating diseases by investigating its expression and effects on OLs and myelin sheath integrity. METHOD We analyzed multiple Gene Expression Omnibus datasets for BMP7 expression profiles in demyelinating conditions such as MS and SCI. Experimentally, we employed a BMP7 knockdown model in rat spinal cords using adeno-associated virus8 vectors to specifically reduce BMP7 expression. Western blotting, immunofluorescence, and Nissl staining were used to assess the effect on OL and other types of cells. The structure of myelin sheath and locomotor function were evaluated using transmission electron microscopy and BBB scores, and statistical analysis included ROC curves and ANOVA to evaluate BMP7's diagnostic and therapeutic potential. RESULTS BMP7 expression consistently decreased across various demyelinating models, and BMP7 knockdown led to increased OL apoptosis through the Smad1/5/9 pathway, with no apparent effect on other cell types. This reduction in OLs was associated with myelin degeneration, axonal damage, and impaired motor function. CONCLUSION The study confirms BMP7's significant involvement in the pathophysiology of demyelinating diseases and supports its potential as a therapeutic target or biomarker. Future research should focus on therapeutic strategies to enhance BMP7 function and further investigate the mechanisms by which BMP7 supports myelin integrity.
Collapse
Affiliation(s)
- Xiaojin Wei
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuxin Liu
- Department of Pain Management and Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Chen
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan, China.
| | - Meng Wang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan, China
| | - Yaping Wang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan, China.
| | - Dingquan Zou
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan, China.
| | - Yanying Xiao
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
2
|
Pan J, Liu B, Dai Z. The Role of a Lung Vascular Endothelium Enriched Gene TMEM100. Biomedicines 2023; 11:937. [PMID: 36979916 PMCID: PMC10045937 DOI: 10.3390/biomedicines11030937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Transmembrane protein 100 (TMEM100) is a crucial factor in the development and maintenance of the vascular system. The protein is involved in several processes such as angiogenesis, vascular morphogenesis, and integrity. Furthermore, TMEM100 is a downstream target of the BMP9/10 and BMPR2/ALK1 signaling pathways, which are key regulators of vascular development. Our recent studies have shown that TMEM100 is a lung endothelium enriched gene and plays a significant role in lung vascular repair and regeneration. The importance of TMEM100 in endothelial cells' regeneration was demonstrated when Tmem100 was specifically deleted in endothelial cells, causing an impairment in their regenerative ability. However, the role of TMEM100 in various conditions and diseases is still largely unknown, making it an interesting area of research. This review summarizes the current knowledge of TMEM100, including its expression pattern, function, molecular signaling, and clinical implications, which could be valuable in the development of novel therapies for the treatment of cardiovascular and pulmonary diseases.
Collapse
Affiliation(s)
- Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Bin Liu
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, University of Arizona, Phoenix, AZ 85004, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Sarver Heart Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Wang Y, Ha M, Li M, Zhang L, Chen Y. Histone deacetylase 6-mediated downregulation of TMEM100 expedites the development and progression of non-small cell lung cancer. Hum Cell 2021; 35:271-285. [PMID: 34687431 DOI: 10.1007/s13577-021-00635-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
The significance of epigenetic modulation, involving acetylation, methylation, as well as ubiquitination has been indicated in the regulation of gene expression and tumor progression. Here, we elucidated the role of histone deacetylase 6 (HDAC6) in regulating epithelial-mesenchymal transition (EMT)-mediated metastasis via mRNA in non-small cell lung cancer (NSCLC). Three microarrays associated with lung cancer metastasis or recurrence, GSE23361, GSE7880 and GSE162102, were downloaded from the GEO database. Transmembrane protein 100 (TMEM100) was revealed to be the only one mRNA that was significantly downregulated in three microarrays. TMEM100, poorly expressed in lung cancer tissues, was associated with poor prognosis of lung cancer patients. Moreover, TMEM100 transcription was regulated by HDAC6 which repressed TMEM100 expression by deacetylation modification on the TMEM100 promoter. Knockdown of HDAC6 or overexpression of TMEM100 in NSCLC cells significantly inhibited TGF-β1-induced EMT and metastasis and suppressed the activation of Wnt/β-catenin signaling pathway. Altogether, our study highlights HDAC6 as a lung cancer metastasis supporter through the suppression of TMEM100 and the induction of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanyun Wang
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Minwen Ha
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, People's Republic of China.
| | - Man Li
- Department of Radiology and Medical Imaging, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Lin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yitong Chen
- Department of Medical College, Medical College of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| |
Collapse
|
4
|
Wen-Jin C, Xiu-Wu P, Jian C, Da X, Jia-Xin C, Wei-Jie C, Lin-Hui W, Xin-Gang C. Study of cellular heterogeneity and differential dynamics of autophagy in human embryonic kidney development by single-cell RNA sequencing. Cancer Cell Int 2021; 21:460. [PMID: 34461918 PMCID: PMC8404318 DOI: 10.1186/s12935-021-02154-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Autophagy is believed to participate in embryonic development, but whether the expression of autophagy-associated genes undergoes changes during the development of human embryonic kidneys remains unknown. Methods In this work, we identified 36,151 human renal cells from embryonic kidneys of 9–18 gestational weeks in 16 major clusters by single-cell RNA sequencing (scRNA-seq), and detected 1350 autophagy-related genes in all fetal renal cells. The abundance of each cell cluster in Wilms tumor samples from scRNA-seq and GDC TARGET WT datasets was detected by CIBERSORTx. R package Monocle 3 was used to determine differentiation trajectories. Cyclone tool of R package scran was applied to calculate the cell cycle scores. R package SCENIC was used to investigate the transcriptional regulons. The FindMarkers tool from Seurat was used to calculate DEGs. GSVA was used to perform gene set enrichment analyses. CellphoneDB was utilized to analyze intercellular communication. Results It was found that cells in the 13th gestational week showed the lowest transcriptional level in each cluster in all stages. Nephron progenitors could be divided into four subgroups with diverse levels of autophagy corresponding to different SIX2 expressions. SSBpod (podocyte precursors) could differentiate into four types of podocytes (Pod), and autophagy-related regulation was involved in this process. Pseudotime analysis showed that interstitial progenitor cells (IPCs) potentially possessed two primitive directions of differentiation to interstitial cells with different expressions of autophagy. It was found that NPCs, pretubular aggregates and interstitial cell clusters had high abundance in Wilms tumor as compared with para-tumor samples with active intercellular communication. Conclusions All these findings suggest that autophagy may be involved in the development and cellular heterogeneity of early human fetal kidneys. In addition, part of Wilms tumor cancer cells possess the characteristics of some fetal renal cell clusters. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02154-w.
Collapse
Affiliation(s)
- Chen Wen-Jin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Pan Xiu-Wu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chu Jian
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Gongli Hospital of Second Military Medical University, 219 Miaopu Road, Shanghai, 200135, China
| | - Xu Da
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Jia-Xin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Wei-Jie
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Wang Lin-Hui
- Department of Urology, Changzheng Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Cui Xin-Gang
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China. .,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Zhuang J, Huang Y, Zheng W, Yang S, Zhu G, Wang J, Lin X, Ye J. TMEM100 expression suppresses metastasis and enhances sensitivity to chemotherapy in gastric cancer. Biol Chem 2021; 401:285-296. [PMID: 31188741 DOI: 10.1515/hsz-2019-0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
The gene encoding transmembrane protein 100 (TMEM100) was first discovered to be transcribed by the murine genome. It has been recently proven that TMEM100 contributes to hepatocellular carcinoma and non-small-cell lung carcinoma (NSCLC). This study investigates the impact of TMEM100 expression on gastric cancer (GC). TMEM100 expression was remarkably downregulated in GC samples compared to the surrounding non-malignant tissues (p < 0.01). Excessive TMEM100 expression prohibited the migration and invasion of GC cells without influencing their growth. However, TMEM100 knockdown restored their migration and invasion potential. Additionally, TMEM100 expression restored the sensitivity of GC cells to chemotherapeutic drugs such as 5-fluouracil (5-FU) and cisplatin. In terms of TMEM100 modulation, it was revealed that BMP9 rather than BMP10, is the upstream modulator of TM3M100. HIF1α downregulation modulated the impact of TMEM100 on cell migration, chemotherapy sensitivity and invasion in GC cells. Eventually, the in vivo examination of TMEM100 activity revealed that its upregulation prohibits the pulmonary metastasis of GC cells and increases the sensitivity of xenograft tumors to 5-FU treatment. In conclusion, TMEM100 serves as a tumor suppressor in GC and could be used as a promising target for the treatment of GC and as a predictor of GC clinical outcome.
Collapse
Affiliation(s)
- Jinfu Zhuang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Jinzhou Wang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Xiaohan Lin
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou 350004, Fujian, China
| |
Collapse
|