1
|
Akinyemi RO, Tiwari HK, Srinivasasainagendra V, Akpa O, Sarfo FS, Akpalu A, Wahab K, Obiako R, Komolafe M, Owolabi L, Osaigbovo GO, Mamaeva OA, Halloran BA, Akinyemi J, Lackland D, Obiabo OY, Sunmonu T, Chukwuonye II, Arulogun O, Jenkins C, Adeoye A, Agunloye A, Ogah OS, Ogbole G, Fakunle A, Uvere E, Coker MM, Okekunle A, Asowata O, Diala S, Ogunronbi M, Adeleye O, Laryea R, Tagge R, Adeniyi S, Adusei N, Oguike W, Olowoyo P, Adebajo O, Olalere A, Oladele O, Yaria J, Fawale B, Ibinaye P, Oyinloye O, Mensah Y, Oladimeji O, Akpalu J, Calys-Tagoe B, Dambatta HA, Ogunniyi A, Kalaria R, Arnett D, Rotimi C, Ovbiagele B, Owolabi MO. Novel functional insights into ischemic stroke biology provided by the first genome-wide association study of stroke in indigenous Africans. Genome Med 2024; 16:25. [PMID: 38317187 PMCID: PMC10840175 DOI: 10.1186/s13073-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND African ancestry populations have the highest burden of stroke worldwide, yet the genetic basis of stroke in these populations is obscure. The Stroke Investigative Research and Educational Network (SIREN) is a multicenter study involving 16 sites in West Africa. We conducted the first-ever genome-wide association study (GWAS) of stroke in indigenous Africans. METHODS Cases were consecutively recruited consenting adults (aged > 18 years) with neuroimaging-confirmed ischemic stroke. Stroke-free controls were ascertained using a locally validated Questionnaire for Verifying Stroke-Free Status. DNA genotyping with the H3Africa array was performed, and following initial quality control, GWAS datasets were imputed into the NIH Trans-Omics for Precision Medicine (TOPMed) release2 from BioData Catalyst. Furthermore, we performed fine-mapping, trans-ethnic meta-analysis, and in silico functional characterization to identify likely causal variants with a functional interpretation. RESULTS We observed genome-wide significant (P-value < 5.0E-8) SNPs associations near AADACL2 and miRNA (MIR5186) genes in chromosome 3 after adjusting for hypertension, diabetes, dyslipidemia, and cardiac status in the base model as covariates. SNPs near the miRNA (MIR4458) gene in chromosome 5 were also associated with stroke (P-value < 1.0E-6). The putative genes near AADACL2, MIR5186, and MIR4458 genes were protective and novel. SNPs associations with stroke in chromosome 2 were more than 77 kb from the closest gene LINC01854 and SNPs in chromosome 7 were more than 116 kb to the closest gene LINC01446 (P-value < 1.0E-6). In addition, we observed SNPs in genes STXBP5-AS1 (chromosome 6), GALTN9 (chromosome 12), FANCA (chromosome 16), and DLGAP1 (chromosome 18) (P-value < 1.0E-6). Both genomic regions near genes AADACL2 and MIR4458 remained significant following fine mapping. CONCLUSIONS Our findings identify potential roles of regulatory miRNA, intergenic non-coding DNA, and intronic non-coding RNA in the biology of ischemic stroke. These findings reveal new molecular targets that promise to help close the current gaps in accurate African ancestry-based genetic stroke's risk prediction and development of new targeted interventions to prevent or treat stroke.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Onoja Akpa
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fred S Sarfo
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Akpalu
- Department of Medicine, University of Ghana Medical School, Accra, Ghana
| | - Kolawole Wahab
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Reginald Obiako
- Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Morenikeji Komolafe
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Lukman Owolabi
- Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | | | - Olga A Mamaeva
- Department of Epidemiology, School of Public Health University of Alabama at Birmingham, Birmingham, USA
| | - Brian A Halloran
- Department of Pediatrics, Volker Hall University of Alabama at Birmingham, Birmingham, USA
| | - Joshua Akinyemi
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olugbo Y Obiabo
- Delta State University/Delta State University Teaching Hospital, Oghara, Nigeria
| | - Taofik Sunmonu
- Department of Medicine, Federal Medical Centre, Ondo State, Owo, Nigeria
| | - Innocent I Chukwuonye
- Department of Medicine, Federal Medical Centre Umuahia, Abia State, Umuahia, Nigeria
| | - Oyedunni Arulogun
- Department of Health Education, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | | | - Abiodun Adeoye
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Atinuke Agunloye
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Okechukwu S Ogah
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Godwin Ogbole
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adekunle Fakunle
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Public Health, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Ezinne Uvere
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Motunrayo M Coker
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Genetics and Cell Biology Unit, Department of Zoology, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | - Akinkunmi Okekunle
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Osahon Asowata
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Samuel Diala
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ogunronbi
- Department of Medicine, Federal Medical Centre, Abeokuta, Nigeria
| | - Osi Adeleye
- Department of Medicine, Federal Medical Centre, Abeokuta, Nigeria
| | - Ruth Laryea
- Department of Medicine, University of Ghana Medical School, Accra, Ghana
| | - Raelle Tagge
- Weill Institute for Neurosciences, School of Medicine, University of California San-Francisco, San Francisco, USA
| | - Sunday Adeniyi
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Nathaniel Adusei
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Wisdom Oguike
- Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Paul Olowoyo
- Federal Teaching Hospital, Ido-Ekiti, Ekiti State, Nigeria
| | - Olayinka Adebajo
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Olalere
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olayinka Oladele
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joseph Yaria
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bimbo Fawale
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Philip Ibinaye
- Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Olalekan Oyinloye
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Yaw Mensah
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Omotola Oladimeji
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Josephine Akpalu
- Department of Medicine, University of Ghana Medical School, Accra, Ghana
| | - Benedict Calys-Tagoe
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Rajesh Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Donna Arnett
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Charles Rotimi
- Center for Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Bruce Ovbiagele
- Genetics and Cell Biology Unit, Department of Zoology, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | - Mayowa O Owolabi
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- University College Hospital, Ibadan, Nigeria.
- Lebanese American University of Beirut, Beirut, Lebanon.
- Blossom Specialist Medical Center, Ibadan, Nigeria.
| |
Collapse
|
3
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Fan MJ, He PJ, Lin XY, Yang CR, Li CZ, Xing LG. MicroRNA-324-5p affects the radiotherapy response of cervical cancer via targeting ELAV-like RNA binding protein 1. Kaohsiung J Med Sci 2020; 36:965-972. [PMID: 32757457 DOI: 10.1002/kjm2.12277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) seriously threatens the health of women. Radiation therapy (RT) is the major treatment for CC. However, the recurrent CC can acquire resistance to RT. Thus, it is necessary to find a new method for reversing RT resistance in CC. It has been reported that miR-324-5p can suppress the progression of multiple cancers. However, whether it can reverse resistance to RT in CC remains unclear. qRT-PCR and Western blotting were used to detect gene and protein expression in CC cells, respectively. Cell proliferation was tested by CCK-8 assay and colony formation assay. In addition, cell apoptosis was detected by flow cytometry. Transwell assays were performed to detect cell migration. Dual luciferase reporter assay and TargetScan were used to explore the targets of microRNA-324-5p (miR-324-5p). MiR-324-5p was downregulated in CC cells. Overexpression of miR-324-5p sensitized CC cells to RT. In addition, miR-324-5p mimics significantly induced apoptosis and inhibits the migration of CC cells in the presence of 137 Cs ionizing radiation. Furthermore, miR-324-5p sensitized CC cells to ionizing radiation by targeting ELAV-like RNA binding protein 1 (ELAVL1). MiR-324-5p overexpression affects the radiotherapy response of CC by targeting ELAVL1, which may serve as a new target for the treatment of CC.
Collapse
Affiliation(s)
- Ming-Jun Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng-Juan He
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue-Yan Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chun-Run Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chang-Zhong Li
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Li-Gang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Cognitive Protective Mechanism of Crocin Pretreatment in Rat Submitted to Acute High-Altitude Hypoxia Exposure. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3409679. [PMID: 32596298 PMCID: PMC7303745 DOI: 10.1155/2020/3409679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Inadequate oxygen availability at high altitude leads to oxidative stress, resulting in hippocampal neurodegeneration and memory impairment. In our previous study, we found that the cognitive dysfunction occurred when male SD rat was rapidly exposed to 4200 m of high altitude for 3 days. And we also found that crocin showed a cognitive protective effect under hypoxia by regulating SIRT1/PGC-1α pathways in rat's hippocampus. In this article, focused on factors related to SIRT1/PGC-1α pathways, we proposed to further elucidate crocin's pharmacological mechanism. Adult male Sprague-Dawley rats were randomly divided into five groups: control group, hypoxia group (rats were rapidly transported to high altitude of 4200 m for 72 h), and crocins+hypoxia groups (pretreatment with crocin of 25, 50, and 100 mg/kg/d for 3 days). The learning and memory ability was tested by Morris water maze analysis. Hippocampal histopathological changes were observed by HE staining and Nissl staining. The expression of NRF1, TFAM, Bcl-2, Bax, and caspase-3 was detected by immunohistochemistry, RT-PCR, and western blotting test. The contents of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSHPx) were detected by the TBA, WST, and colorimetry method. Neuronal apoptosis was observed by TUNEL staining. After crocin pretreatment, the traveled distance was significantly reduced and the percentage of time in the target quadrant was significantly increased tested by Morris water maze. And neuronal damage in the hippocampus was also significantly ameliorated based on HE staining and Nissl staining. Furthermore, in hippocampus tissue, mitochondrial biosynthesis-related factors of NRF1, TFAM expression was increased; oxidative stress factors of SOD, GSH, and GSHPx expression level were increased, and MDA and glutathione disulfide (GSSG) level were decreased; antiapoptotic protein Bcl-2 expression was increased, and proapoptotic proteins Bax and caspase-3 expression were decreased, with a manner of crocin dose dependent. Therefore, the cognitive protective mechanism of crocin in rat under acute hypoxia was related to promoting mitochondrial biosynthesis, ameliorating oxidative stress injury, and decreasing neuronal apoptosis.
Collapse
|