1
|
Liu H, Xu H, Zhu Y, Wang Z, Hu D, Yang L, Zhu Y, Galan EA, Huang R, Peng H, Ma S. A Large Model-Derived Algorithm for Complex Organoids with Internal Morphogenesis and Digital Marker Derivation. Anal Chem 2024; 96:19258-19266. [PMID: 39445667 DOI: 10.1021/acs.analchem.4c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Automated segmentation and evaluation algorithms have been demonstrated to enhance the simplicity and translational utility of organoid technology. However, there is a pressing need for the development of complex organoids that possess epithelium environmental elements, dense regional cell aggregation, and intraorganoid morphologies. Nevertheless, there has been limited progress, including both the construction of data sets and the development of algorithms, in the use of user-friendly microscopy to address such complex organoids. In this study, a data set of bright-field and living cell fluorescence images in paired forms and with temporal variance was constructed using droplet-engineered lung organoids. Additionally, a large model-based algorithm was developed. Both the organoid contours and intraorganoid morphologies were included in the data set, and their physical parameters were included and screened to form multiplex digital markers for organoid evaluation. The algorithm has been demonstrated to outperform existing methods and is therefore suitable for the evaluation of complex organoids. It is expected that the algorithm will facilitate the successful demonstration of AI in organoid evaluation and decision-making regarding their status.
Collapse
Affiliation(s)
- Hanghang Liu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Haohan Xu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Danni Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Lingxiao Yang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yinheng Zhu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Edgar A Galan
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Ruqi Huang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Haiying Peng
- General Hospital of the Southern Theater Command of the Chinese People's Liberation Army, Guangzhou 510280, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Resende PVS, Gomes INF, Peixoto MC, Stringhetta GR, Arantes LMRB, Kuzmin VA, Borissevitch I, Reis RM, de Lima Vazquez V, Ferreira LP, Oliveira RJS. Evaluation of the antineoplastic properties of the photosensitizer biscyanine in 2D and 3D tumor cell models and artificial skin models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113078. [PMID: 39671777 DOI: 10.1016/j.jphotobiol.2024.113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Photodynamic Therapy (PDT) is a therapeutic modality that combines the application of a photoactive compound (photosensitizer, PS) with low-power light to generate reactive oxygen species in the target tissue, resulting in cytotoxic damage and cell death, while sparing adjacent tissues. The objective of this study was to evaluate the phototoxicity of a cyanine dye with two chromophores (biscyanines, BCD) in systems with varying levels of cellular organization, and we used the Photogem® (a photosensitizer approved by the Brazilian ANVISA agency for clinical use in Photodynamic Therapy) as a positive control. MATERIALS AND METHODS The cytotoxicity of the compounds was assessed in vitro in 2D monolayers, 3D spheroid cultures, and artificial skin models. Four tumoral cell lines A375 (melanoma), HCB-541 (cutaneous squamous cell carcinoma), Vu120T and Vu147T (head and neck cancer), and two normal cell lines fibroblastic HFF-1 and keratinocyte HACAT were used in this study. Cell viability, migration, production of reactive oxygen species, expression of proteins linked to DNA damage and repair, internalization, and skin permeation of PS agents. RESULTS Light irradiation in the presence of the PS resulted in greater cytotoxic effects for BCD as compared to Photogem®, which was accompanied by an increase in the production of reactive oxygen species including H2O2, elevated levels of cleaved PARP, and a higher rate of phosphorylated H2AX protein. BCD demonstrated enhanced internalization and bioaccumulation in the spheroids and equivalent skin models. CONCLUSION BCD, as a photosensitizer, showed higher cytotoxicity, with an increased ability to generate reactive oxygen species. This led to reduced cell viability, inhibited migration, and upregulated DNA damage-related proteins. Additionally, its enhanced cellular uptake improved skin barrier permeability, making BCD a strong candidate for in vivo Photodynamic Therapy.
Collapse
Affiliation(s)
| | | | - Maria Clara Peixoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | | | - Iouri Borissevitch
- Departamento de Física da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Vinícius de Lima Vazquez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Surgery, Melanoma and Sarcoma, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Renato José Silva Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos 14785-002, SP, Brazil.
| |
Collapse
|
3
|
Rahman M, Sahoo A, Almalki WH, Salman Almujri S, Aodah A, Alnofei AA, Alhamyani A. Three-dimensional cell culture: Future scope in cancer vaccine development. Drug Discov Today 2024; 29:104114. [PMID: 39067612 DOI: 10.1016/j.drudis.2024.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Three-dimensional (3D) cell culture techniques, which are superior to 2D methods in viability and functionality, are being used to develop innovative cancer vaccines. Tumor spheroids, which are structurally and functionally similar to actual tumors, can be developed using 3D cell culture. These spheroid vaccines have shown superior antitumor immune responses to 2D cell-based vaccines. Dendritic cell vaccines can also be produced more efficiently using 3D cell culture. Personalized cancer vaccines are being developed using 3D cell culture, providing substantial benefits over 2D methods. The more natural conditions of 3D cell culture might promote the expression of tumor antigens not expressed in 2D culture, potentially allowing for more targeted vaccines by co-culturing tumor cells with other cell types. Advanced cancer vaccines using 3D cell cultures are expected soon.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India.
| | - Ankit Sahoo
- College of Pharmacy, J.S. University, Shikohabad, Firozabad, Uttar Pradesh, 283135, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Alhussain Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Abdulrahman A Alnofei
- Psychological Measurement and Evaluation, Department of Psychology, Faculty of Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| |
Collapse
|
4
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
5
|
Yamaguchi A. Evaluation of fish pituitary spheroids to study annual endocrine reproductive control. Gen Comp Endocrinol 2024; 351:114481. [PMID: 38408711 DOI: 10.1016/j.ygcen.2024.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
The pituitary gland is a small endocrine gland located below the hypothalamus. This gland releases several important hormones and controls the function of many other endocrine system glands to release hormones. Fish pituitary hormonal cells are controlled by neuroendocrine and sex steroid feedback. To study the complex pituitary function in vivo, we established an in vitro pituitary spheroid assay and evaluated its suitability for monitoring the annual reproductive physiological conditions in Takifugu rubripes, also known as torafugu, is one of the most economically important species distributed in the northwestern part of the Pacific Ocean, in the western part of the East China Sea, and in more northern areas near Hokkaido, Japan. Fish pituitary spheroids can be easily constructed in liquid or solid plates. The culture medium (L-15) made the aggregation faster than MEM (Hank's). A Rho-kinase inhibitor (Y-27632, 10 μM) and/or fish serum (2.5 %) also promoted spheroid formation. Laser confocal microscopy analysis of spheroids cultured with annual serum of both sexes revealed that luteinizing hormone (LH) synthesis has the highest peak in the final maturation stage (3 years old, May) in accordance with the highest serum sex steroid levels; in contrast, follicle stimulating hormone (FSH) synthesis has no correlation with the dose of serum or nutrients. Similarly, 3D cell propagation assays using female serum showed that total pituitary cells displayed the highest proliferation at puberty onset (2 years old, October) before half a year of the spawning season. These results indicate that pituitary spheroids are useful in vitro models for monitoring the reproductive physiological status of fish in vivo and may be applicable to the in vitro screening of environmental chemicals and bioactive compounds affecting reproductive efficiency in aquaculture.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Kim S, Park J, Ho JN, Kim D, Lee S, Jeon JS. 3D vascularized microphysiological system for investigation of tumor-endothelial crosstalk in anti-cancer drug resistance. Biofabrication 2023; 15:045016. [PMID: 37567223 DOI: 10.1088/1758-5090/acef99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Despite the advantages of microfluidic system in drug screening, vascular systems responsible for the transport of drugs and nutrients have been hardly considered in the microfluidic-based chemotherapeutic screening. Considering the physiological characteristics of highly vascularized urinary tumors, we here investigated the chemotherapeutic response of bladder tumor cells using a vascularized tumor on a chip. The microfluidic chip was designed to have open-top region for tumor sample introduction and hydrophilic rail for spontaneous hydrogel patterning, which contributed to the construction of tumor-hydrogel-endothelium interfaces in a spatiotemporal on-demand manner. Utilizing the chip where intravascularly injected cisplatin diffuse across the endothelium and transport into tumor samples, chemotherapeutic responses of cisplatin-resistant or -susceptible bladder tumor cells were evaluated, showing the preservation of cellular drug resistance even within the chip. The open-top structure also enabled the direct harvest of tumor samples and post analysis in terms of secretome and gene expressions. Comparing the cisplatin efficacy of the cisplatin-resistant tumor cells in the presence or absence of endothelium, we found that the proliferation rates of tumor cells were increased in the vasculature-incorporated chip. These have suggested that our vascularized tumor chip allows the establishment of vascular-gel-tumor interfaces in spatiotemporal manners and further enables investigations of chemotherapeutic screening.
Collapse
Affiliation(s)
- Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Joonha Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Danhyo Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Abstract
Angiogenic sprouting, the formation of new blood vessels from pre-existing vasculature, is tightly regulated by the properties of the surrounding tissue microenvironment. Although the extracellular matrix has been shown to be a major regulator of this process, it is not clear how individual biochemical and mechanical properties influence endothelial cell sprouting. This information gap is largely due to the lack of suitable in vitro models that recapitulate angiogenic sprouting in a 3D environment with independent control over matrix properties. Here, we present protocols for the preparation of endothelial cell spheroid-laden synthetic, dextran-based hydrogels, which serve as a highly tunable 3D scaffold. The adjustment of the hydrogels' adhesiveness, stiffness, and degradability is demonstrated in detail. Finally, we describe assays to elucidate how individual matrix properties regulate angiogenic sprouting, including their analysis by immunofluorescence staining and imaging. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synthesis of methacrylated dextran (DexMA) Basic Protocol 2: Generation of endothelial cell spheroids in microwells Basic Protocol 3: Endothelial cell sprouting in hydrogels of tunable stiffness Basic Protocol 4: Endothelial cell sprouting in hydrogels of tunable adhesiveness Basic Protocol 5: Endothelial cell sprouting in hydrogels of tunable degradability Basic Protocol 6: Imaging of endothelial cell spheroid-laden hydrogels Support Protocol 1: Preparation of pro-angiogenic cocktail for endothelial cell sprouting.
Collapse
Affiliation(s)
- Giuseppe Trapani
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Sebastian Weiß
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
8
|
Kim J. Characterization of Biocompatibility of Functional Bioinks for 3D Bioprinting. Bioengineering (Basel) 2023; 10:bioengineering10040457. [PMID: 37106644 PMCID: PMC10135811 DOI: 10.3390/bioengineering10040457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Three-dimensional (3D) bioprinting with suitable bioinks has become a critical tool for fabricating 3D biomimetic complex structures mimicking physiological functions. While enormous efforts have been devoted to developing functional bioinks for 3D bioprinting, widely accepted bioinks have not yet been developed because they have to fulfill stringent requirements such as biocompatibility and printability simultaneously. To further advance our knowledge of the biocompatibility of bioinks, this review presents the evolving concept of the biocompatibility of bioinks and standardization efforts for biocompatibility characterization. This work also briefly reviews recent methodological advances in image analyses to characterize the biocompatibility of bioinks with regard to cell viability and cell-material interactions within 3D constructs. Finally, this review highlights a number of updated contemporary characterization technologies and future perspectives to further advance our understanding of the biocompatibility of functional bioinks for successful 3D bioprinting.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
9
|
Tjong J, Pendlmayr S, Barter J, Chen J, Maksym GN, Quinn TA, Frampton JP. Cell-contact-mediated assembly of contractile airway smooth muscle rings. Biomed Mater 2023; 18. [PMID: 36801856 DOI: 10.1088/1748-605x/acbd09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
Microtissues in the shape of toroidal rings provide an ideal geometry to better represent the structure and function of the airway smooth muscle present in the small airways, and to better understand diseases such as asthma. Here, polydimethylsiloxane devices consisting of a series of circular channels surrounding central mandrels are used to form microtissues in the shape of toroidal rings by way of the self-aggregation and -assembly of airway smooth muscle cell (ASMC) suspensions. Over time, the ASMCs present in the rings become spindle-shaped and axially align along the ring circumference. Ring strength and elastic modulus increase over 14 d in culture, without significant changes in ring size. Gene expression analysis indicates stable expression of mRNA for extracellular matrix-associated proteins, including collagen I and lamininsα1 andα4 over 21 d in culture. Cells within the rings respond to TGF-β1 treatment, leading to dramatic decreases in ring circumference, with increases in mRNA and protein levels for extracellular matrix and contraction-associated markers. These data demonstrate the utility of ASMC rings as a platform for modeling diseases of the small airways such as asthma.
Collapse
Affiliation(s)
- Jonathan Tjong
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Stefan Pendlmayr
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Jena Barter
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Julie Chen
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
| | - T Alexander Quinn
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Physiology & Biophysics, Dalhousie University, Halifax, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
10
|
Optimization of 3D-aggregated spheroid model (3D-ASM) for selecting high efficacy drugs. Sci Rep 2022; 12:18937. [PMID: 36344810 PMCID: PMC9640609 DOI: 10.1038/s41598-022-23474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Various three-dimensional (3D) cell culture methods have been developed to implement tumor models similar to in vivo. However, the conventional 3D cell culture method has limitations such as difficulty in using an extracellular matrix (ECM), low experimental reproducibility, complex 3D cell culture protocol, and difficulty in applying to high array plates such as 96- or 384-plates. Therefore, detailed protocols related to robust 3D-aggregated spheroid model (3D-ASM) production were optimized and proposed. A specially designed wet chamber was used to implement 3D-ASM using the hepatocellular carcinoma (HCC) cell lines, and the conditions were established for the icing step to aggregate the cells in one place and optimized ECM gelation step. Immunofluorescence (IF) staining is mainly used to simultaneously analyze drug efficacy and changes in drug-target biomarkers. By applying the IF staining method to the 3D-ASM model, confocal microscopy imaging and 3D deconvolution image analysis were also successfully performed. Through a comparative study of drug response with conventional 2D-high throughput screening (HTS), the 3D-HTS showed a more comprehensive range of drug efficacy analyses for HCC cell lines and enabled selective drug efficacy analysis for the FDA-approved drug sorafenib. This suggests that increased drug resistance under 3D-HTS conditions does not reduce the analytical discrimination of drug efficacy, also drug efficacy can be analyzed more selectively compared to the conventional 2D-HTS assay. Therefore, the 3D-HTS-based drug efficacy analysis method using an automated 3D-cell spotter/scanner, 384-pillar plate/wet chamber, and the proposed 3D-ASM fabrication protocol is a very suitable platform for analyzing target drug efficacy in HCC cells.
Collapse
|
11
|
Matthews JM, Schuster B, Kashaf SS, Liu P, Ben-Yishay R, Ishay-Ronen D, Izumchenko E, Shen L, Weber CR, Bielski M, Kupfer SS, Bilgic M, Rzhetsky A, Tay S. OrganoID: A versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLoS Comput Biol 2022; 18:e1010584. [PMID: 36350878 PMCID: PMC9645660 DOI: 10.1371/journal.pcbi.1010584] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
Organoids have immense potential as ex vivo disease models for drug discovery and personalized drug screening. Dynamic changes in individual organoid morphology, number, and size can indicate important drug responses. However, these metrics are difficult and labor-intensive to obtain for high-throughput image datasets. Here, we present OrganoID, a robust image analysis platform that automatically recognizes, labels, and tracks single organoids, pixel-by-pixel, in brightfield and phase-contrast microscopy experiments. The platform was trained on images of pancreatic cancer organoids and validated on separate images of pancreatic, lung, colon, and adenoid cystic carcinoma organoids, which showed excellent agreement with manual measurements of organoid count (95%) and size (97%) without any parameter adjustments. Single-organoid tracking accuracy remained above 89% over a four-day time-lapse microscopy study. Automated single-organoid morphology analysis of a chemotherapy dose-response experiment identified strong dose effect sizes on organoid circularity, solidity, and eccentricity. OrganoID enables straightforward, detailed, and accurate image analysis to accelerate the use of organoids in high-throughput, data-intensive biomedical applications.
Collapse
Affiliation(s)
- Jonathan M. Matthews
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Brooke Schuster
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Chemistry, The University of Chicago, Chicago, Illinois, United States of America
| | - Sara Saheb Kashaf
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Ping Liu
- Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Rakefet Ben-Yishay
- Institute of Oncology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Ishay-Ronen
- Institute of Oncology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Izumchenko
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Le Shen
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
- Organoid and Primary Culture Research Core, The University of Chicago, Chicago, Illinois, United States of America
| | - Christopher R. Weber
- Organoid and Primary Culture Research Core, The University of Chicago, Chicago, Illinois, United States of America
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Margaret Bielski
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Sonia S. Kupfer
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Mustafa Bilgic
- Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
12
|
Jubelin C, Muñoz-Garcia J, Griscom L, Cochonneau D, Ollivier E, Heymann MF, Vallette FM, Oliver L, Heymann D. Three-dimensional in vitro culture models in oncology research. Cell Biosci 2022; 12:155. [PMID: 36089610 PMCID: PMC9465969 DOI: 10.1186/s13578-022-00887-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer is a multifactorial disease that is responsible for 10 million deaths per year. The intra- and inter-heterogeneity of malignant tumors make it difficult to develop single targeted approaches. Similarly, their diversity requires various models to investigate the mechanisms involved in cancer initiation, progression, drug resistance and recurrence. Of the in vitro cell-based models, monolayer adherent (also known as 2D culture) cell cultures have been used for the longest time. However, it appears that they are often less appropriate than the three-dimensional (3D) cell culture approach for mimicking the biological behavior of tumor cells, in particular the mechanisms leading to therapeutic escape and drug resistance. Multicellular tumor spheroids are widely used to study cancers in 3D, and can be generated by a multiplicity of techniques, such as liquid-based and scaffold-based 3D cultures, microfluidics and bioprinting. Organoids are more complex 3D models than multicellular tumor spheroids because they are generated from stem cells isolated from patients and are considered as powerful tools to reproduce the disease development in vitro. The present review provides an overview of the various 3D culture models that have been set up to study cancer development and drug response. The advantages of 3D models compared to 2D cell cultures, the limitations, and the fields of application of these models and their techniques of production are also discussed.
Collapse
|
13
|
|
14
|
Lenzi E, Jimenez de Aberasturi D, Henriksen-Lacey M, Piñeiro P, Muniz AJ, Lahann J, Liz-Marzán LM. SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20708-20719. [PMID: 35487502 PMCID: PMC9100500 DOI: 10.1021/acsami.2c02615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
With the ever-increasing use of 3D cell models toward studying bio-nano interactions and offering alternatives to traditional 2D in vitro and in vivo experiments, methods to image biological tissue in real time and with high spatial resolution have become a must. A suitable technique therefore is surface-enhanced Raman scattering (SERS)-based microscopy, which additionally features reduced photocytotoxicity and improved light penetration. However, optimization of imaging and postprocessing parameters is still required. Herein we present a method to monitor cell proliferation over time in 3D, using multifunctional 3D-printed scaffolds composed of biologically inert poly(lactic-co-glycolic acid) (PLGA) as the base material, in which fluorescent labels and SERS-active gold nanoparticles (AuNPs) can be embedded. The combination of imaging techniques allows optimization of SERS imaging parameters for cell monitoring. The scaffolds provide anchoring points for cell adhesion, so that cell growth can be observed in a suspended 3D matrix, with multiple reference points for confocal fluorescence and SERS imaging. By prelabeling cells with SERS-encoded AuNPs and fluorophores, cell proliferation and migration can be simultaneously monitored through confocal Raman and fluorescence microscopy. These scaffolds provide a simple method to follow cell dynamics in 4D, with minimal disturbance to the tissue model.
Collapse
Affiliation(s)
- Elisa Lenzi
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Malou Henriksen-Lacey
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Paula Piñeiro
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Ayse J. Muniz
- Biointerfaces
Institute, Department of Chemical Engineering, Materials Science and
Engineering, Biomedical Engineering Macromolecular
Science and Engineering B10-A175 NCRC University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Joerg Lahann
- Biointerfaces
Institute, Department of Chemical Engineering, Materials Science and
Engineering, Biomedical Engineering Macromolecular
Science and Engineering B10-A175 NCRC University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
15
|
Yu P, Duan Z, Liu S, Pachon I, Ma J, Hemstreet GP, Zhang Y. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models. MICROMACHINES 2021; 13:mi13010003. [PMID: 35056167 PMCID: PMC8780064 DOI: 10.3390/mi13010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The kidneys are often involved in adverse effects and toxicity caused by exposure to foreign compounds, chemicals, and drugs. Early predictions of these influences are essential to facilitate new, safe drugs to enter the market. However, in current drug treatments, drug-induced nephrotoxicity accounts for 1/4 of reported serious adverse reactions, and 1/3 of them are attributable to antibiotics. Drug-induced nephrotoxicity is driven by multiple mechanisms, including altered glomerular hemodynamics, renal tubular cytotoxicity, inflammation, crystal nephropathy, and thrombotic microangiopathy. Although the functional proteins expressed by renal tubules that mediate drug sensitivity are well known, current in vitro 2D cell models do not faithfully replicate the morphology and intact renal tubule function, and therefore, they do not replicate in vivo nephrotoxicity. The kidney is delicate and complex, consisting of a filter unit and a tubular part, which together contain more than 20 different cell types. The tubular epithelium is highly polarized, and maintaining cellular polarity is essential for the optimal function and response to environmental signals. Cell polarity depends on the communication between cells, including paracrine and autocrine signals, as well as biomechanical and chemotaxis processes. These processes affect kidney cell proliferation, migration, and differentiation. For drug disposal research, the microenvironment is essential for predicting toxic reactions. This article reviews the mechanism of drug-induced kidney injury, the types of nephrotoxicity models (in vivo and in vitro models), and the research progress related to drug-induced nephrotoxicity in three-dimensional (3D) cellular culture models.
Collapse
Affiliation(s)
- Pengfei Yu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Liu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ivan Pachon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | | | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Correspondence: ; Tel.: +1-336-713-1189
| |
Collapse
|
16
|
Verdi V, Bécot A, van Niel G, Verweij FJ. In vivo imaging of EVs in zebrafish: New perspectives from "the waterside". FASEB Bioadv 2021; 3:918-929. [PMID: 34761174 PMCID: PMC8565201 DOI: 10.1096/fba.2021-00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
To harmoniously coordinate the activities of all its different cell types, a multicellular organism critically depends on intercellular communication. One recently discovered mode of intercellular cross-talk is based on the exchange of "extracellular vesicles" (EVs). EVs are nano-sized heterogeneous lipid bilayer vesicles enriched in a variety of biomolecules that mediate short- and long-distance communication between different cells, and between cells and their environment. Numerous studies have demonstrated important aspects pertaining to the dynamics of their release, their uptake, and sub-cellular fate and roles in vitro. However, to demonstrate these and other aspects of EV biology in a relevant, fully physiological context in vivo remains challenging. In this review we analyze the state of the art of EV imaging in vivo, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real-time and expand our understanding of EV biology at cellular and systems level.
Collapse
Affiliation(s)
- Vincenzo Verdi
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Anaïs Bécot
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| | - Guillaume van Niel
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Frederik J Verweij
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| |
Collapse
|
17
|
Heydari Z, Zarkesh I, Ghanian MH, Aghdaei MH, Kotova S, Zahmatkesh E, Farzaneh Z, Piryaei A, Akbarzadeh I, Shpichka A, Gramignoli R, Timashev P, Baharvand H, Vosough M. Biofabrication of size-controlled liver microtissues incorporated with ECM-derived microparticles to prolong hepatocyte function. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00137-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|