1
|
Duan X, Liu R, Xi Y, Tian Z. The mechanisms of exercise improving cardiovascular function by stimulating Piezo1 and TRP ion channels: a systemic review. Mol Cell Biochem 2025; 480:119-137. [PMID: 38625513 DOI: 10.1007/s11010-024-05000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Mechanosensitive ion channels are widely distributed in the heart, lung, bladder and other tissues, and plays an important role in exercise-induced cardiovascular function promotion. By reviewing the PubMed databases, the results were summarized using the terms "Exercise/Sport", "Piezo1", "Transient receptor potential (TRP)" and "Cardiovascular" as the keywords, 124-related papers screened were sorted and reviewed. The results showed that: (1) Piezo1 and TRP channels play an important role in regulating blood pressure and the development of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cardiac fibrosis; (2) Exercise promotes cardiac health, inhibits the development of pathological heart to heart failure, regulating the changes in the characterization of Piezo1 and TRP channels; (3) Piezo1 activates downstream signaling pathways with very broad pathways, such as AKT/eNOS, NF-κB, p38MAPK and HIPPO-YAP signaling pathways. Piezo1 and Irisin regulate nuclear localization of YAP and are hypothesized to act synergistically to regulate tissue mechanical properties of the cardiovascular system and (4) The cardioprotective effects of exercise through the TRP family are mostly accomplished through Ca2+ and involve many signaling pathways. TRP channels exert their important cardioprotective effects by reducing the TRPC3-Nox2 complex and mediating Irisin-induced Ca2+ influx through TRPV4. It is proposed that exercise stimulates the mechanosensitive cation channel Piezo1 and TRP channels, which exerts cardioprotective effects. The activation of Piezo1 and TRP channels and their downstream targets to exert cardioprotective function by exercise may provide a theoretical basis for the prevention of cardiovascular diseases and the rehabilitation of clinical patients.
Collapse
Affiliation(s)
- Xinyan Duan
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Renhan Liu
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Rolfe RA, Bastürkmen ET, Sliney L, Hayden G, Dunne N, Buckley N, McCarthy H, Szczesny SE, Murphy P. Embryo movement is required for limb tendon maturation. Front Cell Dev Biol 2024; 12:1466872. [PMID: 39574785 PMCID: PMC11579356 DOI: 10.3389/fcell.2024.1466872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Following early cell specification and tenocyte differentiation at the sites of future tendons, very little is known about how tendon maturation into robust load-bearing tissue is regulated. Between embryonic day (E)16 and E18 in the chick, there is a rapid change in mechanical properties which is dependent on normal embryo movement. However, the tissue, cellular and molecular changes that contribute to this transition are not well defined. Methods Here we profiled aspects of late tendon development (collagen fibre alignment, cell organisation and Yap pathway activity), describing changes that coincide with tissue maturation. We compared effects of rigid (constant static loading) and flaccid (no loading) immobilisation to gain insight into developmental steps influenced by mechanical cues. Results We show that YAP signalling is active and responsive to movement in late tendon. Collagen fibre alignment increased over time and under static loading. Cells organise into end-to-end stacked columns with increased distance between adjacent columns, where collagen fibres are deposited; this organisation was lost following both types of immobilisation. Discussion We conclude that specific aspects of tendon maturation require controlled levels of dynamic muscle-generated stimulation. Such a developmental approach to understanding how tendons are constructed will inform future work to engineer improved tensile load-bearing tissues.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Ebru Talak Bastürkmen
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lauren Sliney
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Grace Hayden
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin College University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, University of Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queens University Belfast, Belfast, United Kingdom
| | - Helen McCarthy
- School of Pharmacy, Queens University Belfast, Belfast, United Kingdom
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, United States
| | - Paula Murphy
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Zhang S, Shang J, Gu Z, Gu X, Wang F, Hu X, Wu G, Zou H, Ruan J, He X, Bao C, Zhang Z, Li X, Chen H. Global research trends and hotspots on tendon-derived stem cell: a bibliometric visualization study. Front Bioeng Biotechnol 2024; 11:1327027. [PMID: 38260747 PMCID: PMC10801434 DOI: 10.3389/fbioe.2023.1327027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose: This study was aimed to examine the global research status and current research hotspots in the field of tendon stem cells. Methods: Bibliometric methods were employed to retrieve relevant data from the Web of Science Core Collection (WOSCC) database. Additionally, Citespace, Vosviewer, SCImago, and Graphad Prism were utilized to analyze the publication status in this field, identify the current research hotspots, and present a mini-review. Results: The most active countries in this field were China and the United States. Notable authors contributing significantly to this research included Lui Pauline Po Yee, Tang Kanglai, Zhang Jianying, Yin Zi, and Chen Xiao, predominantly affiliated with institutions such as the Hong Kong Hospital Authority, Third Military Medical University, University of Pittsburgh, and Zhejiang University. The most commonly published journals in this field were Stem Cells International, Journal of Orthopedic Research, and Stem Cell Research and Therapy. Moreover, the current research hotspots primarily revolved around scaffolds, molecular mechanisms, and inflammation regulation. Conclusion: Tendon stem cells hold significant potential as seed cells for tendon tissue engineering and offer promising avenues for further research Scaffolds, molecular mechanisms and inflammation regulation are currently research hotspots in this field.
Collapse
Affiliation(s)
- Songou Zhang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Zhiqian Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaopeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Fei Wang
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xujun Hu
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guoliang Wu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Huan Zou
- Department of Orthopedics, Ningbo Sixth Hospital, Ningbo, Zhejiang, China
| | - Jian Ruan
- Department of Orthopedics, Ningbo Sixth Hospital, Ningbo, Zhejiang, China
| | - Xinkun He
- Department of Orthopedics, Ningbo Sixth Hospital, Ningbo, Zhejiang, China
| | - Chenzhou Bao
- Department of Orthopedics, Ningbo Sixth Hospital, Ningbo, Zhejiang, China
| | - ZhenYu Zhang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xin Li
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hong Chen
- Department of Orthopedics, Ningbo Sixth Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Di Giacomo G, Vadalà G, Ambrosio L, Cicione C, Tilotta V, Cannata F, Russo F, Papalia R, Denaro V. Irisin inhibits tenocyte response to inflammation in vitro: New insights into tendon-muscle cross-talk. J Orthop Res 2023; 41:2195-2204. [PMID: 37132159 DOI: 10.1002/jor.25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Tendinopathy is one of the most common musculoskeletal disorders with significant repercussions on quality of life and sport activities. Physical exercise (PE) is considered the first-line approach to treat tendinopathy due renowned mechanobiological effects on tenocytes. Irisin, a recently identified myokine released during PE, has been recognized for several beneficial effects towards muscle, cartilage, bone, and intervertebral disc tissues. The aim of this study was to evaluate the effects of irisin on human primary tenocytes (hTCs) in vitro. Human tendons were harvested from specimens of patients undergoing anterior cruciate ligament reconstruction (n = 4). After isolation and expansion, hTCs were treated with RPMI medium (negative control), interleukin (IL)-1β or tumor necrosis factor-α (TNF-α) (positive controls; 10 ng/mL), irisin (5, 10, 25 ng/mL), IL-1β or TNF-α pretreatment and subsequent co-treatment with irisin, pretreatment with irisin and subsequent co-treatment with IL-1β or TNF-α. hTC metabolic activity, proliferation, and nitrite production were evaluated. Detection of unphosphorylated and phosphorylated p38 and ERK was performed. Tissue samples were analyzed by histology and immunohistochemistry to evaluate irisin αVβ5 receptor expression. Irisin significantly increased hTC proliferation and metabolic activity, while reducing the production of nitrites both before and after the addition of IL-1β and TNF-α. Interestingly, irisin reduced p-p38 and pERK levels in inflamed hTCs. The αVβ5 receptor was uniformly expressed on hTC plasma membranes, supporting the potential binding of irisin. This is the first study reporting the capacity of irisin to target hTCs and modulating their response to inflammatory stresses, possibly orchestrating a biological crosstalk between the muscle and tendon.
Collapse
Affiliation(s)
- Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Luca Ambrosio
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Francesca Cannata
- Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabrizio Russo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rocco Papalia
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|