1
|
He XY, Liang JT, Xiao JY, Li X, Zhang XB, Chen DY, Wu LJ. Dahuang Zhechong Pill Improves Pulmonary Fibrosis through miR-29b-2-5p/HK2 Mediated Glycolysis Pathway. Chin J Integr Med 2024:10.1007/s11655-024-3765-x. [PMID: 39231918 DOI: 10.1007/s11655-024-3765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To explore the preventive and therapeutic effects of Dahuang Zhechong Pill (DZP) on pulmonary fibrosis and the underlying mechanisms. METHODS The first key rate-limiting enzyme hexokinase 2 (HK2) of glycolysis was silenced and over-expressed through small interfering RNA and lentivirus using lung fibroblast MRC-5 cell line, respectively. The cell viability, migration, invasion and proliferation were detected by cell counting kit-8, wound healing assay, transwell assay, and flow cytometry. The mRNA and protein expression levels of HK2 were detected by RT-PCR and Western blotting, respectively. The contents of glucose, adenosine triphosphate (ATP) and lactate in MRC-5 cells were determined by enzyme-linked immunosorbnent assay (ELISA). Then, the relationship between miR-29b-2-5p and HK2 was explored by luciferase reporter gene assay. Pulmonary fibrosis cell model was induced by transforming growth factor-β 1 (TGF-β 1) in MRC-5 cells, and the medicated serum of DZP (DMS) was prepared in rats. MRC-5 cells were divided into control, TGF-β 1, TGF-β 1+10% DMS, TGF-β 1+10% DMS+miR-29b-2-5p inhibitor, TGF-β 1+10% DMS+inhibitor negative control, TGF-β 1+10% DMS+miR-29b-2-5p mimic and TGF-β 1+10% DMS+mimic negative control groups. After miR-29b-2-5p mimics and inhibitors were transfected into MRC-5 cells, all groups except control and model group were treated with DMS. The effect of DMS on MRC-5 cells were detected using aforementioned methods and immunofluorescence. Similarly, the contents of glucose, ATP and lactate in each group were measured by ELISA. RESULTS The mRNA and protein expressions of HK2 in MRC-5 cells were successfully silenced and overexpressed through si-HK2-3 and lentiviral transfection, respectively. After silencing HK2, the mRNA and protein expressions of HK2 were significantly decreased (P<0.01), and the concentrations of glucose, ATP and lactate were also significantly decreased (P<0.05). The proliferation, migration and invasion of MRC-5 cells were significantly declined (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly increased (P<0.01). After overexpressing HK2, the mRNA and protein expressions of HK2 were significantly increased (P<0.05), and the concentrations of glucose, ATP and lactate were also significantly increased (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were significantly increased (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly decreased (P<0.05). The relative luciferase activity of 3'UTR-WT+hsa-miR-29b-2-5p transfected with HK2 was significantly decreased (P<0.01). After miR-29b-2-5p mimic and inhibitor were transfected into the MRC-5 cells, DMS intervention could significantly reduce the concentration of glucose, ATP and lactate, and the mRNA and proteins expressions of HK2, phosphofructokinase and pyruvate kinase isoform M2 (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were alleviated (P<0.05 or P<0.01), and the deposition of fibronectin, α-smooth muscle actin, and collagen I were significantly decreased (P<0.05 or P<0.01). CONCLUSIONS Glycolysis is closely related to pulmonary fibrosis. DZP reduced glycolysis and inhibited fibroblasts' excessive differentiation and abnormal collagen deposition through the miR-29b-2-5p/HK2 pathway, which played a role in delaying the process of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiao-Yan He
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Tao Liang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing-Yi Xiao
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Li
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Bo Zhang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Da-Yi Chen
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Juan Wu
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Wu Y, Jia Q, Tang Q, Chen L, Deng H, He Y, Tang F. A specific super-enhancer actuated by berberine regulates EGFR-mediated RAS-RAF1-MEK1/2-ERK1/2 pathway to induce nasopharyngeal carcinoma autophagy. Cell Mol Biol Lett 2024; 29:92. [PMID: 38943090 PMCID: PMC11214260 DOI: 10.1186/s11658-024-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.
Collapse
Affiliation(s)
- Yao Wu
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Qi Tang
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Lin Chen
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Hongyu Deng
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Yingchun He
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China.
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China.
| |
Collapse
|
3
|
Sun J, Wei Y, Wang J, Hou M, Su L. Treatment of colorectal cancer by traditional Chinese medicine: prevention and treatment mechanisms. Front Pharmacol 2024; 15:1377592. [PMID: 38783955 PMCID: PMC11112518 DOI: 10.3389/fphar.2024.1377592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) is a significant global health burden, with high morbidity and mortality rates. It is often diagnosed at middle to advanced stage, affecting approximately 35% of patients at the time of diagnosis. Currently, chemotherapy has been used to improve patient prognosis and increase overall survival. However, chemotherapy can also have cytotoxic effects and lead to adverse reactions, such as inhibiting bone marrow hematopoiesis, causing digestive dysfunction, hand-foot syndrome, and even life-threatening conditions. In response to these adverse effects, researchers have proposed using Traditional Chinese Medicine (TCM) as an option to treat cancer. TCM research focuses on prescriptions, herbs, and components, which form essential components of the current research in Chinese medicine. The study and implementation of TCM prescriptions and herbs demonstrate its distinctive holistic approach to therapy, characterized by applying multi-component and multi-target treatment. TMC components have advantages in developing new drugs as they consist of single ingredients, require smaller medication dosages, have a precise measure of pharmacodynamic effects, and have a clear mechanism of action compared to TCM prescriptions and herbs. However, further research is still needed to determine whether TMC components can fully substitute the therapeutic efficacy of TCM prescriptions. This paper presents a comprehensive analysis of the research advancements made in TCM prescriptions, herbs, and components. The findings of this study can serve as a theoretical basis for researchers who are interested in exploring the potential of TCM for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jiaxin Sun
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Ying Wei
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Jia Wang
- Department of Gynaecology, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Mingxing Hou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Liya Su
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Qin JJ, Niu MD, Cha Z, Geng QH, Li YL, Ren CG, Molloy DP, Yu HR. TRAIL and Celastrol Combinational Treatment Suppresses Proliferation, Migration, and Invasion of Human Glioblastoma Cells via Targeting Wnt/β-catenin Signaling Pathway. Chin J Integr Med 2024; 30:322-329. [PMID: 37861963 DOI: 10.1007/s11655-023-3752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To investigate the mechanistic basis for the anti-proliferation and anti-invasion effect of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) and celastrol combination treatment (TCCT) in glioblastoma cells. METHODS Cell counting kit-8 was used to detect the effects of different concentrations of celastrol (0-16 µmol/L) and TRAIL (0-500 ng/mL) on the cell viability of glioblastoma cells. U87 cells were randomly divided into 4 groups, namely control, TRAIL (TRAIL 100 ng/mL), Cel (celastrol 0.5 µmol/L) and TCCT (TRAIL 100 ng/mL+ celastrol 0.5 µmol/L). Cell proliferation, migration, and invasion were detected by colony formation, wound healing, and Transwell assays, respectively. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed to assess the levels of epithelial-mesenchymal transition (EMT) markers (zona occludens, N-cadherin, vimentin, zinc finger E-box-binding homeobox, Slug, and β-catenin). Wnt pathway was activated by lithium chloride (LiCl, 20 mol/L) and the mechanism for action of TCCT was explored. RESULTS Celastrol and TRAIL synergistically inhibited the proliferation, migration, invasion, and EMT of U87 cells (P<0.01). TCCT up-regulated the expression of GSK-3β and down-regulated the expression of β-catenin and its associated proteins (P<0.05 or P<0.01), including c-Myc, Cyclin-D1, and matrix metalloproteinase (MMP)-2. In addition, LiCl, an activator of the Wnt signaling pathway, restored the inhibitory effects of TCCT on the expression of β-catenin and its downstream genes, as well as the migration and invasion of glioblastoma cells (P<0.05 or P<0.01). CONCLUSIONS Celastrol and TRAIL can synergistically suppress glioblastoma cell migration, invasion, and EMT, potentially through inhibition of Wnt/β-catenin pathway. This underlies a novel mechanism of action for TCCT as an effective therapy for glioblastoma.
Collapse
Affiliation(s)
- Jing-Jing Qin
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Meng-da Niu
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Cha
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qing-Hua Geng
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Lin Li
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Guang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hua-Rong Yu
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Xing Y, Lin B, Liu B, Shao J, Jin Z. Tectorigenin Inhibits Glycolysis-induced Cell Growth and Proliferation by Modulating LncRNA CCAT2/miR-145 Pathway in Colorectal Cancer. Curr Cancer Drug Targets 2024; 24:1071-1079. [PMID: 38243936 PMCID: PMC11340290 DOI: 10.2174/0115680096274757231219072003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) places a heavy burden on global health. Tectorigenin (Tec) is a type of flavonoid-based compound obtained from the Chinese medical herb Leopard Lily Rhizome. It was found to exhibit remarkable anti-tumor properties in previous studies. However, the effect and molecular mechanisms of Tec in colorectal cancer have not been reported. OBJECTIVE The objective of this study was to explore the action of Tec in proliferation and glycolysis in CRC and the potential mechanism with regard to the long non-coding RNA (lncRNA) CCAT2/micro RNA-145(miR-145) pathway in vitro and in vivo . METHODS The anti-tumor effect of Tec in CRC was examined in cell and animal studies, applying Cell Counting Kit-8 (CCK-8) assay as well as xenograft model experiments. Assay kits were utilized to detect glucose consumption and lactate production in the supernatant of cells and animal serum. The expression of the glycolysis-related proteins was assessed by Western Blotting, and levels of lncRNA CCAT2 and miR-145 in CRC tissue specimens and cells were assessed by realtime quantitative PCR (RT-qPCR). RESULTS Tec significantly suppressed cell glycolysis and proliferative rate in CRC cells. It could decrease lncRNA CCAT2 in CRC cells but increase the expression of miR-145. LncRNA CCAT2 overexpression or inhibition of miR-145 could abolish the inhibitive effects of Tec on the proliferation and glycolysis of CRC cells. The miR-145 mimic rescued the increased cell viability and glycolysis levels caused by lncRNA CCAT2 overexpression. Tec significantly inhibited the growth and glycolysis of CRC xenograft tumor. The expression of lncRNA CCAT2 decreased while the expression of miR-145 increased after Tec treatment in vivo. CONCLUSION Tec can inhibit the proliferation and glycolysis of CRC cells through the lncRNA CCAT2/miR-145 axis. Altogether, the potential targets discovered in this research are of great significance for CRC treatment and new drug development.
Collapse
Affiliation(s)
- Ying Xing
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bofan Lin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Baoxinzi Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jie Shao
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhichao Jin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Sun HX, Zhu Y. Progress on Regulation of NLRP3 Inflammasome by Chinese Medicine in Treatment of Ulcerative Colitis. Chin J Integr Med 2023:10.1007/s11655-023-3551-1. [PMID: 37148482 DOI: 10.1007/s11655-023-3551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 05/08/2023]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific intestinal disease that not only affects the quality of life of patients and their families but also increases the risk of colorectal cancer. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of inflammatory response system, and its activation induces an inflammatory cascade response that is involved in the development and progression of UC by releasing inflammatory cytokines, damaging intestinal epithelial cells, and disrupting the intestinal mucosal barrier. Chinese medicine (CM) plays a vital role in the prevention and treatment of UC and is able to regulate NLRP3 inflammasome. Many experimental studies on the regulation of NLRP3 inflammasome mediated by CM have been carried out, demonstrating that CM formulae with main effects of clearing heat, detoxifying toxicity, drying dampness, and activating blood circulation. Flavonoids and phenylpropanoids can effectively regulate NLRP3 inflammasome. Other active components of CM can interfere with the process of NLRP3 inflammasome assembly and activation, leading to a reduction in inflammation and UC symptoms. However, the reports are relatively scattered and lack systematic reviews. This paper reviews the latest findings regarding the NLRP3 inflammasome activation-related pathways associated with UC and the potential of CM in treating UC through modulation of NLRP3 inflammasome. The purpose of this review is to explore the possible pathological mechanisms of UC and suggest new directions for development of therapeutic tools.
Collapse
Affiliation(s)
- Hao-Xian Sun
- Department of Gastroenterology, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ying Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
7
|
Li B, Cao Q, Liu Z. The treatment effects of Trametes Robiniophila Murr against colorectal cancer: A mini-review. Front Med (Lausanne) 2022; 9:981516. [PMID: 35991644 PMCID: PMC9381862 DOI: 10.3389/fmed.2022.981516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide disease threatening people's lives. Surgery and chemotherapy are still the main methods for CRC treatment. However, the side effects and chemotherapeutic drug resistance restrict the application of chemotherapy. Trametes Robiniophila Murr, also known as Huaier, is a traditional Chinese medicine that has been used for more than 1,600 years. Huaier extracts have promising anti-cancer effects on hepatoma, breast cancer, and gastric cancer. Nowadays, the tumor inhibition of Huaier on CRC has attracted more and more attention. This review mainly provides the possible anti-tumor mechanisms of Huaier for CRC treatment in apoptosis and inhibiting proliferation of tumor cells, preventing epithelial-mesenchymal transformation (EMT), weakening proliferation and differentiation of CRC stem cells, decreasing the vessel density in tumor tissues, and enhancing the immune system and chemotherapeutic efficacy. Huaier extract may be a good candidate for CRC treatment, especially when combined with other chemotherapeutic agents.
Collapse
Affiliation(s)
- Bo Li
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Cao
- Department of Education, Jilin University Second Hospital, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhuo Liu
| |
Collapse
|