1
|
Yang L, Zhou H, Wang Q, Wang Z, Bai L, Wei J, Song L, Zhang F, Tian X, Liang T. Prevention of osteoporosis in ovariectomized mice with yak caseinate calcium. J Dairy Sci 2025:S0022-0302(25)00148-1. [PMID: 40139370 DOI: 10.3168/jds.2024-25711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
Moderate calcium supplementation coupled with enhanced calcium absorption rates in postmenopausal women is crucial for the prevention of postmenopausal osteoporosis (PMOP). Here, calcium yak caseinate (CYC) was provided to ovariectomized (OVX) mice as a nutrition supplement for 6 wk and was shown to effectively improve PMOP. It was observed that CYC remarkably improved the bone physical index (bone length and weight) of OVX mice, and significantly reduced the levels of serum calcium, alkaline phosphatase (ALP), and carboxy-terminal telopeptide of type I collagen, while significantly increasing the level of serum procollagen I N-terminal propeptide. It is of particular significance that low-dose CYC (L-CYC) was observed to prevent the decline of bone mineral density (BMD) in OVX mice. Moreover, CYC supplementation has been shown to attenuate the deterioration of trabecular bone structure and to maintain the morphology and number of trabeculae. Additionally, it has been demonstrated to prevent skeletal muscle atrophy to a certain extent. This study indicated that L-CYC effectively inhibited bone resorption while facilitating bone formation, thereby improving bone quality in OVX mice.
Collapse
Affiliation(s)
- Lijing Yang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Haiyun Zhou
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Qianyu Wang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziheng Wang
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Lin Bai
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Jia Wei
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Li Song
- Gansu Hualing Dairy Company Ltd., Hezuo 747000, China
| | - Fumei Zhang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; Department of Medicine, Northwest Minzu University, Lanzhou 730124, China.
| | - Xiaojing Tian
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730124, China.
| | - Tisong Liang
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Chongqing 401120, China
| |
Collapse
|
2
|
Li X, Si Y, Liang J, Li M, Wang Z, Qin Y, Sun L. Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells. J Colloid Interface Sci 2024; 672:179-199. [PMID: 38838627 DOI: 10.1016/j.jcis.2024.05.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaorong Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yunhui Si
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jingxian Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengsha Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Zhiwei Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yinying Qin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Chen S, Guo L, Zhao H, Wan X, Zang J. Quantitative measurements of dual-energy CT parameters in the diagnosis of osteoporosis - a highly sensitive and specific technique: An observational study. Medicine (Baltimore) 2024; 103:e38559. [PMID: 38968500 PMCID: PMC11224864 DOI: 10.1097/md.0000000000038559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/22/2024] [Indexed: 07/07/2024] Open
Abstract
With the aging of the population in our society, osteoporosis (OP) has become one of the chronic diseases that seriously threaten the physical health of the elderly, leading to a heavy burden on healthcare. In recent years, with the continuous development of dual-energy CT (DECT) technology, quantitative measurements of DECT parameters, which is highly sensitive to OP, provides accurate results, is convenient and cost-effective, and is expected to be widely used in bone density testing. This study was aimed to explore the value of quantitative measurements of DECT parameters in diagnosing OP, in order to better guide clinical judgments and treatment. A total of 187 patients who underwent dual-energy X-ray and DECT examinations at Tianjin hospital between January 2022 and June 2023 were included as participants in this study. The bone mineral density (BMD) values of the lumbar spine (L1-L4) were determined using dual-energy X-ray absorptiometry. Simultaneously, CT scans of the lumbar spine (L1-L4) were conducted to measure the CT values of contrast media (CM), mixed-energy image CT values (regular CT value [rCT]), calcium concentration (CaD), as well as fat fraction (FF). Pearson correlation analysis was used to examine the relationship between the quantitative measurements of L1 to L4 vertebral bodies obtained from DECT and BMD. The values of CM, rCT, and CaD in the OP group were all lower than those in the non-OP group with statistical significance (P < .001). Conversely, the fat fraction parameter value in the OP group was significantly higher in contrast with the non-OP group (P = .004); there was a positive correlation between CM, rCT, CaD, and BMD values (R = 0.579, P < .001; R = 0.604, P < .001; R = 0.563, P < .001); CM, rCT, and CaD had high diagnostic value for OP, as evidenced by AUCs of 0.935 (95% CI: 0.900-0.971), 0.956 (95% CI: 0.925-0.987), and 0.926 (95% CI: 0.858-0.954), respectively, all with P values < .001. Quantitative measurement of DECT parameters showed a high sensitivity as well as a high specificity in the diagnosis of OP. It is also highly feasible and holds significant clinical diagnostic value, making it a suitable candidate for widespread application.
Collapse
Affiliation(s)
- Si Chen
- Radiology Department, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Lin Guo
- Radiology Department, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hui Zhao
- Radiology Department, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Wan
- Ultrasonic Department, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jiacheng Zang
- Department of Hip, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Bisazza KT, Nelson BB, Sikes KJ, Nakamura L, Easley JT. Computed Tomography Provides Improved Quantification of Trabecular Lumbar Spine Bone Loss Compared to Dual-Energy X-Ray Absorptiometry in Ovariectomized Sheep. JBMR Plus 2023; 7:e10807. [PMID: 38130759 PMCID: PMC10731101 DOI: 10.1002/jbm4.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 12/23/2023] Open
Abstract
Early detection of osteoporosis using advanced imaging is imperative to the successful treatment and prevention of high morbidity fractures in aging patients. In this preclinical study, we aimed to compare dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) to quantify bone mineral density (BMD) changes in the sheep lumbar spine. We also aimed to determine the relationship of BMD to microarchitecture in the same animals as an estimate of imaging modality precision. Osteoporosis was induced in 10 ewes via laparoscopic ovariectomy and administration of high-dose corticosteroids. We performed DXA and QCT imaging to measure areal BMD (aBMD) and trabecular volumetric BMD (Tb.vBMD)/cortical vBMD (Ct.vBMD), respectively, at baseline (before ovariectomy) and at 3, 6, 9, and 12 months after ovariectomy. Iliac crest bone biopsies were collected at each time point for micro-computed tomography (microCT) analysis; bone volume fraction (BV/TV), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp) were reported. aBMD and Tb.vBMD both decreased significantly by 3 and 6 months (p < 0.05) compared with baseline, whereas no changes to Ct.vBMD were observed. Combined (Tb. and Ct.) vBMD was significantly correlated with aBMD at all time points (all p < 0.05). Additionally, greater significant correlations were found between BV/TV and Tb.vBMD at all five time points (R 2 = 0.54, 0.57, 0.66, 0.46, and 0.56, respectively) than with aBMD values (R 2 = 0.23, 0.55, 0.41, 0.20, and 0.19, respectively). The higher correlation of microCT values with QCT than with DXA indicates that QCT provides additional detailed information regarding bone mineral density changes in preclinical settings. Because trabecular bone is susceptible to rapid density loss and structural changes during osteoporosis, QCT can capture these subtle changes more precisely than DXA in a large animal preclinical model. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katie T Bisazza
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Brad B Nelson
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Katie J Sikes
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Lucas Nakamura
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical EngineeringColorado State UniversityFort CollinsCOUSA
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
5
|
Jin D, Zheng H, Yuan H. Exploring the Possibility of Measuring Vertebrae Bone Structure Metrics Using MDCT Images: An Unpaired Image-to-Image Translation Method. Bioengineering (Basel) 2023; 10:716. [PMID: 37370647 DOI: 10.3390/bioengineering10060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Bone structure metrics are vital for the evaluation of vertebral bone strength. However, the gold standard for measuring bone structure metrics, micro-Computed Tomography (micro-CT), cannot be used in vivo, which hinders the early diagnosis of fragility fractures. This paper used an unpaired image-to-image translation method to capture the mapping between clinical multidetector computed tomography (MDCT) and micro-CT images and then generated micro-CT-like images to measure bone structure metrics. MDCT and micro-CT images were scanned from 75 human lumbar spine specimens and formed training and testing sets. The generator in the model focused on learning both the structure and detailed pattern of bone trabeculae and generating micro-CT-like images, and the discriminator determined whether the generated images were micro-CT images or not. Based on similarity metrics (i.e., SSIM and FID) and bone structure metrics (i.e., bone volume fraction, trabecular separation and trabecular thickness), a set of comparisons were performed. The results show that the proposed method can perform better in terms of both similarity metrics and bone structure metrics and the improvement is statistically significant. In particular, we compared the proposed method with the paired image-to-image method and analyzed the pros and cons of the method used.
Collapse
Affiliation(s)
- Dan Jin
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Han Zheng
- School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
6
|
Antich-Rosselló M, Forteza-Genestra MA, Ronold HJ, Lyngstadaas SP, García-González M, Permuy M, López-Peña M, Muñoz F, Monjo M, Ramis JM. Platelet-derived extracellular vesicles formulated with hyaluronic acid gels for application at the bone-implant interface: An animal study. J Orthop Translat 2023; 40:72-79. [PMID: 37457308 PMCID: PMC10338901 DOI: 10.1016/j.jot.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background/Objective Platelet derived extracellular vesicles (pEV) are promising therapeutical tools for bone healing applications. In fact, several in vitro studies have already demonstrated the efficacy of Extracellular Vesicles (EV) in promoting bone regeneration and repair in various orthopedic models. Therefore, to evaluate the translational potential in this field, an in vivo study was performed. Methods Here, we used hyaluronic acid (HA) gels formulated with pEVs, as a way to directly apply pEVs and retain them at the bone defect. In this study, pEVs were isolated from Platelet Lysate (PL) through size exclusion chromatography and used to formulate 2% HA gels. Then, the gels were locally applied on the tibia cortical bone defect of New Zeland White rabbits before the surgical implantation of coin-shaped titanium implants. After eight weeks, the bone healing process was analyzed through biomechanical, micro-CT, histological and biochemical analysis. Results Although no biomechanical differences were observed between pEV formulated gels and non-formulated gels, biochemical markers of the wound fluid at the interface presented a decrease in Lactate dehydrogenase (LDH) activity and alkaline phosphatase (ALP) activity for pEV HA treated implants. Moreover, histological analyses showed that none of the treatments induced an irritative effect and, a decrease in the fibrotic response surrounding the implant for pEV HA treated implants was described. Conclusion In conclusion, pEVs improve titanium implants biocompatibility at the bone-implant interface, decreasing the necrotic effects of the surgery and diminishing the fibrotic layer associated to the implant encapsulation that can lead to implant failure.
Collapse
Affiliation(s)
- Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Maria Antònia Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Hans Jacob Ronold
- Department of Prosthetic Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Mario García-González
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
| | - María Permuy
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Mónica López-Peña
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Fernando Muñoz
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Departament de Biologia Fonamental I Ciències de La Salut, UIB, Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Departament de Biologia Fonamental I Ciències de La Salut, UIB, Palma, Spain
| |
Collapse
|
7
|
Tian X, Raina DB, Vater C, Kilian D, Ahlfeld T, Platzek I, Nimtschke U, Tägil M, Lidgren L, Thomas A, Platz U, Schaser KD, Disch AC, Zwingenberger S. Evaluation of an Injectable Biphasic Calcium Sulfate/Hydroxyapatite Cement for the Augmentation of Fenestrated Pedicle Screws in Osteoporotic Vertebrae: A Biomechanical Cadaver Study. J Funct Biomater 2022; 13:jfb13040269. [PMID: 36547529 PMCID: PMC9786089 DOI: 10.3390/jfb13040269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Cement augmentation of pedicle screws is one of the most promising approaches to enhance the anchoring of screws in the osteoporotic spine. To date, there is no ideal cement for pedicle screw augmentation. The purpose of this study was to investigate whether an injectable, bioactive, and degradable calcium sulfate/hydroxyapatite (CaS/HA) cement could increase the maximum pull-out force of pedicle screws in osteoporotic vertebrae. Herein, 17 osteoporotic thoracic and lumbar vertebrae were obtained from a single fresh-frozen human cadaver and instrumented with fenestrated pedicle screws. The right screw in each vertebra was augmented with CaS/HA cement and the un-augmented left side served as a paired control. The cement distribution, interdigitation ability, and cement leakage were evaluated using radiographs. Furthermore, pull-out testing was used to evaluate the immediate mechanical effect of CaS/HA augmentation on the pedicle screws. The CaS/HA cement presented good distribution and interdigitation ability without leakage into the spinal canal. Augmentation significantly enhanced the maximum pull-out force of the pedicle screw in which the augmented side was 39.0% higher than the pedicle-screw-alone side. Therefore, the novel biodegradable biphasic CaS/HA cement could be a promising material for pedicle screw augmentation in the osteoporotic spine.
Collapse
Affiliation(s)
- Xinggui Tian
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Deepak B. Raina
- Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Corina Vater
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - David Kilian
- Center for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Tilman Ahlfeld
- Center for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Ivan Platzek
- Department of Radiology, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Ute Nimtschke
- Institute of Anatomy, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Magnus Tägil
- Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Lars Lidgren
- Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Alexander Thomas
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Uwe Platz
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Klaus-Dieter Schaser
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander C. Disch
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
8
|
Wang F, Zheng L, Theopold J, Schleifenbaum S, Heyde CE, Osterhoff G. Methods for bone quality assessment in human bone tissue: a systematic review. J Orthop Surg Res 2022; 17:174. [PMID: 35313901 PMCID: PMC8935787 DOI: 10.1186/s13018-022-03041-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background For biomechanical investigations on bone or bone implants, bone quality represents an important potential bias. Several techniques for assessing bone quality have been described in the literature. This study aims to systematically summarize the methods currently available for assessing bone quality in human bone tissue, and to discuss the advantages and limitations of these techniques. Methods A systematic review of the literature was carried out by searching the PubMed and Web of Science databases from January 2000 to April 2021. References will be screened and evaluated for eligibility by two independent reviewers as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies must apply to bone quality assessment with imaging techniques, mechanical testing modalities, and compositional characterization. The terms used for the systematic search were: “(bone quality”. Ti,ab.) AND “(human bone specimens)”. Results The systematic review identified 502 relevant articles in total. Sixty-eight articles met the inclusion criteria. Among them, forty-seven articles investigated several imaging modalities, including radiography, dual-energy X-ray absorptiometry (DEXA), CT-based techniques, and MRI-based methods. Nineteen articles dealt with mechanical testing approaches, including traditional testing modalities and novel indentation techniques. Nine articles reported the correlation between bone quality and compositional characterization, such as degree of bone mineralization (DBM) and organic composition. A total of 2898 human cadaveric bone specimens were included. Conclusions Advanced techniques are playing an increasingly important role due to their multiple advantages, focusing on the assessment of bone morphology and microarchitecture. Non-invasive imaging modalities and mechanical testing techniques, as well as the assessment of bone composition, need to complement each other to provide comprehensive and ideal information on the bone quality of human bone specimens. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03041-4.
Collapse
Affiliation(s)
- Fangxing Wang
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany. .,Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany.
| | - Leyu Zheng
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Jan Theopold
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany
| | - Christoph-Eckhard Heyde
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Yun J, Lee J, Ha CW, Park SJ, Kim S, Koo KT, Seol YJ, Lee YM. The effect of 3-D printed polylactic acid scaffold with and without hyaluronic acid on bone regeneration. J Periodontol 2021; 93:1072-1082. [PMID: 34773704 DOI: 10.1002/jper.21-0428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Three- dimensional (3D) technology has been suggested to overcome these limitations in guided bone regeneration (GBR) procedures because 3D-printed scaffolds can be easily molded to patient-specific bone defect site. This study aimed to investigate the effect of 3-D printed polylactic acid (PLA) scaffolds with or without hyaluronic acid (HA) in a rabbit calvaria model. METHODS A calvaria defect with a diameter of 15 mm was created in 30 New Zealand white rabbits. The rabbits were randomly allocated into 3 groups including no graft group (control, n = 10) , 3D printed PLA graft group (3D-PLA, n = 10) , and 3D printed PLA with hyaluronic acid graft group (3D-PLA/HA, n = 10) . Five animals in each group were sacrificed at 4 and 12 weeks after surgery. Microcomputed tomography and histologic and histomorphometric analyses were performed. RESULTS Over the whole examination period, no significant adverse reactions were observed. There were no statistically significant differences in bone volume (BV) /tissue volume (TV) among the three groups at 4 weeks. However, the highest BV/TV was observed in the 3D-PLA/HA group at 12 weeks. The new bone area for control, 3D-PLA, and 3D-PLA/HA showed no statistical differences at 4 weeks. However, the value was significantly higher in the 3D-PLA and 3D-PLA/HA groups compared to the control group at 12 weeks. CONCLUSION The 3D printed PLA scaffolds was biocompatible and integrated well with bone defect margin. They were also provided the proper space for new bone formation. Therefore, 3D printed PLA/HA might be a potential tool to enhance bone augmentation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junseob Yun
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jungwon Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,One-Stop Specialty Center, Seoul National University Dental Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Cheol Woo Ha
- Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology, 113-58, Seohaean-ro, Siheung-si, Gyeonggi-do, 15014, Republic of Korea
| | - Seong Je Park
- Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology, 113-58, Seohaean-ro, Siheung-si, Gyeonggi-do, 15014, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ki-Tae Koo
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
10
|
Diebo BG, Sheikh B, Freilich M, Shah NV, Redfern JAI, Tarabichi S, Shepherd EM, Lafage R, Passias PG, Najjar S, Schwab FJ, Lafage V, Paulino CB. Osteoporosis and Spine Surgery: A Critical Analysis Review. JBJS Rev 2021; 8:e0160. [PMID: 33006455 DOI: 10.2106/jbjs.rvw.19.00160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite being part of the aging process, early and adequate management of osteoporosis mitigates adverse outcomes associated with low bone mineral density. Although the health-care burden of osteoporosis is on the rise, screening and management of osteoporosis are not yet an integral part of preoperative patient evaluation in spine surgery. Patients with osteoporosis should undergo multidisciplinary evaluation and management, including lifestyle modifications and initiation of multiple therapeutic modalities. Integrating osteoporosis in preoperative optimization and surgical planning for patients undergoing spine surgery has the potential to mitigate osteoporosis-related postoperative complications.
Collapse
Affiliation(s)
- Bassel G Diebo
- 1Department of Orthopaedic Surgery and Rehabilitation Medicine, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York 2Royal College of Surgeons in Ireland (RCSI)-Bahrain, Al Sayh, Bahrain 3Division of Spine Surgery, Methodist Hospitals, Merrillville, Indiana 4Spine Service, Hospital for Special Surgery, New York, NY 5Department of Orthopaedic Surgery, NYU Langone Orthopedic Hospital, New York, NY 6Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang M, Hung VWY, Li TK, Law SW, Wang Y, Chen S, Qin L. Performance of HR-pQCT, DXA, and FRAX in the discrimination of asymptomatic vertebral fracture in postmenopausal Chinese women. Arch Osteoporos 2021; 16:125. [PMID: 34480663 PMCID: PMC8418592 DOI: 10.1007/s11657-021-00939-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Volumetric bone density (vBMD) and trabecular microarchitecture measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) can discriminate the patients with high risk of asymptomatic vertebral fracture (VF) in postmenopausal Chinese women. These findings suggested that HR-pQCT could provide additional information on bone quality of the patients with asymptomatic VF. INTRODUCTION Although there were several studies using HR-pQCT to investigate asymptomatic VF, it remains uncertain if HR-pQCT parameters can discriminate asymptomatic VF patients, especially in Chinese population. The purpose of this study was to investigate whether bone quality measured by HR-pQCT could discriminate asymptomatic VF independent of hip areal bone mineral density (aBMD) measured by dual-energy x-ray absorptiometry (DXA) and fracture risks evaluated using built-in Fracture Risk Assessment Tool (FRAXBMD). METHODS This is a nested case-control study. One hundred seventy-five ambulatory Chinese postmenopausal women aged 60-79 years were retrieved from Normative Reference Standards (NRS) cohort in Hong Kong. DXA was used to identify VF from lateral spine images (VFA) using Genant's semi-quantitative method. Major osteoporotic fracture risk was calculated using FRAX tool. HR-pQCT was used to assess vBMD, microarchitecture, and estimated strength at both distal radius and tibia. Comparison of HR-pQCT parameters between asymptomatic VF and control was performed using covariance analysis. Logistic regression analysis was performed for calculating the adjusted odds ratio (OR) with 95% confidence intervals (CI) of fracture status as per SD decrease in HR-pQCT parameters. RESULTS Women with asymptomatic VF were older than those of the control in our NRS cohort. Nevertheless, after adjusted for covariance, asymptomatic VF showed significantly lower trabecular vBMD (Tb.vBMD) at radius but higher SMI at tibia as compared with those of the control. Tb.vBMD at radius yielded the highest value of area under the curve (AUC) as compared with total hip aBMD and FRAXBMD. However, no significant difference was found among each other. CONCLUSION Tb.vBMD at the radius and SMI at the tibia provided by HR-pQCT can discriminate asymptomatic VF independent of hip aBMD and FRAXBMD by DXA in postmenopausal women.
Collapse
Affiliation(s)
- Meiling Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Vivian Wing-Yin Hung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Kiu Li
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung Wai Law
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shangjie Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Rehabilitation, Shenzhen Baoan Hospital Affiliated to Southern Medical University, Shenzhen, China.
| | - Ling Qin
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Huang TY, Wu CC, Weng PW, Chen JM, Yeh WL. Effect of ErhBMP-2-loaded β-tricalcium phosphate on ulna defects in the osteoporosis rabbit model. Bone Rep 2020; 14:100739. [PMID: 33364265 PMCID: PMC7750155 DOI: 10.1016/j.bonr.2020.100739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Autografts, the gold standard treatment for large bone defects, present complications, especially in conditions with reduced bone-repair capacity, such as osteoporosis. Escherichia coli-derived recombinant human bone morphogenesis protein-2 (ErhBMP-2), was used in this study to improve the osteoinductivity of β-tricalcium phosphate (β-TCP). This study evaluated the bone-repair capacity of ErhBMP-2-loaded β-TCP on osteoporosis rabbit model, relative to the sole use of autograft and β-TCP treatments. Methods The osteoporosis rabbit model was induced through ovariectomy and glucocorticoid dosing; 2-cm segmental ulnar defects were created, which were treated with either autograft, β-TCP alone, or ErhBMP-2-loaded β-TCP or left untreated. The quality of newly formed ulnae was evaluated 8 weeks after ulnar surgery through micro-CT, biomechanical, histological, and histomorphometric assessments. Results The osteoporosis rabbit model was developed and maintained till the end of the study. The maximal load and stiffness in the ErhBMP-2-loaded TCP group were significantly higher than those in the autograft group, whereas the TCP-alone group performed similarly as did the untreated group in the force loading and stiffness tests. According to the micro-CT evaluation, the ErhBMP-2-loaded TCP group had significantly higher bone volume relative to the autograft and TCP-alone groups. Histological assessments revealed better defect bridging and marrow formation in the ErhBMP-2-loaded TCP group relative to the TCP-alone group. Mineral apposition rates were significantly higher in the ErhBMP-2-loaded TCP and autograft groups than in the TCP-alone and untreated groups. Conclusion Relative to autografts, ErhBMP-2-loaded TCP, as an alternative grafting material, provides better or comparable healing on critical-sized long bone defects in the osteoporosis rabbit model. Erh-BMP-2 promoted the bone healing ability of β-TCP in osteoporosis animal model. New bone generated by Erh-BMP-2-loaded β-TCP was stiffer than that generated by autograft. ErhBMP-2-loaded TCP potentially being an alternative grafting material relative to autograft.
Collapse
Affiliation(s)
- Tse-Yin Huang
- Ph.D. Program for Biotech Pharmaceutical Industry, School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Chang-Chin Wu
- Department of Orthopedics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan.,Department of Orthopedics, En Chu Kong Hospital, New Taipei City 23702, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taiwan.,Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Jian-Ming Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan
| | - Weng-Ling Yeh
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 33305, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
13
|
Zhou B, Peng K, Wang G, Chen W, Liu P, Chen F, Kang Y. miR‑483‑3p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the Wnt signaling pathway. Int J Mol Med 2020; 46:1571-1581. [PMID: 32945363 PMCID: PMC7447299 DOI: 10.3892/ijmm.2020.4694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disease during which bone mass decreases and bone quality is reduced. Maintaining the bone formation capacity of osteoblasts is crucial for the treatment of osteoporosis. In the present study, bioinformatics analysis was performed on online microarray expression profiles to identify miRNA(s) related to osteoblast proliferation and bone marrow‑derived mesenchymal stem cell (BMSC) osteogenic differentiation. The specific effects of candidate miRNAs on cell proliferation, osteogenic differentiation and Wnt signaling‑related factors were examined. As regards the downstream mechanisms, online tools were employed to predict the downstream targets of candidate miRNAs and the predicted miRNA‑mRNA binding was verified. Finally, the dynamic effects of miRNAs and mRNAs were examined. The results revealed that miR‑483‑3p expression was decreased in bone tissue samples from patients with osteoporosis. In miR‑483‑3p‑overexpressing human osteoblasts, cell viability, DNA synthesis capacity and osteogenesis were promoted, and the protein levels of Wnt1, β‑catenin and cyclin D1 were increased. However, the protein receptor activator of nuclear factor kappa‑Β ligand (RANKL)/osteoprotegerin (OPG) ratio and cell apoptotic rate were decreased. The Wnt signaling, antagonist Dikkopf 2 (DKK2), was targeted and negatively regulated by miR‑483‑3p. DKK2 knockdown exerted similar effects as miR‑483‑3p overexpression, while DKK2 overexpression inhibited cell viability, DNA synthesis capacity and osteogenesis. DKK2 overexpression also decreased the Wnt1, β‑catenin, and cyclin D1 protein levels, whereas it promoted the the RANKL/OPG ratio and the apoptosis of human osteoblasts. DKK2 overexpression reversed the functions of miR‑483‑3p overexpression. On the whole, the findings of the present study demonstrate that the miR‑483‑3p/DKK2 axis modulates the bone formation process by affecting osteoblast proliferation, pre‑osteoblast differentiation into mature osteoblasts and new bone matrix formation.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Kun Peng
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Guoqiang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Weihua Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Ping Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Fei Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
14
|
Arnold EL, Clement J, Rogers KD, Garcia-Castro F, Greenwood C. The use of μCT and fractal dimension for fracture prediction in osteoporotic individuals. J Mech Behav Biomed Mater 2020; 103:103585. [PMID: 32090913 DOI: 10.1016/j.jmbbm.2019.103585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022]
Abstract
Osteoporosis (OP) is a widespread condition with commonly associated fracture sites at the hip, vertebra and wrist. This study examines the effects of age and osteoporosis on bone quality by comparing the efficacy of using parameters which indicate bone quality (both traditional clinical parameters such as bone mineral density (BMD), as well as apparent Young's modulus determined by finite element analysis, among others) to predict fracture. Non-fracture samples were collected from the femoral heads of 83 donors (44 males, 39 females), and fracture samples were obtained from the femoral heads of 17 donors (female). Microarchitectural parameters (Bone Volume/Total Volume [BV/TV], Bone Surface/Bone Volume [BS/BV], Tissue Mineral Density [TMD, etc.]) were measured from μCT of each sample as well as 2D and 3D fractal dimension (D2D and D3D respectively). A cube was cropped from μCT images and an isotropic hexahedral element was assigned to each voxel. Finite element analysis was used to calculate the Young's modulus for each sample. Overall, values for microarchitectural characteristics, fractal dimension measurements and Young's Modulus were consistent with values within literature. Significant correlations are observed between age and BV/TV for non-fracture males and females, as well as between age and volumetric BMD (vBMD) for the same groups. Significant differences are present between age-matched non-fracture and fracture females for BV/TV, BS/BV, vBMD, TMD, D2D, D3D, (p < 0.01 for all). Properties which are not age dependent are significantly different between age-matched non-fracture and fracture specimens, indicating OP is a disease, and not just an accelerated aging process.
Collapse
Affiliation(s)
- Emily L Arnold
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK.
| | - John Clement
- Melbourne Dental School, University of Melbourne, Australia
| | - Keith D Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | | | | |
Collapse
|
15
|
Li Y, Zhang Y, Meng W, Li Y, Huang T, Wang D, Hu M. The Antiosteoporosis Effects of Yishen Bugu Ye Based on Its Regulation on the Differentiation of Osteoblast and Osteoclast. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9467683. [PMID: 32149147 PMCID: PMC7054773 DOI: 10.1155/2020/9467683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Yishen Bugu Ye (YSBGY), a traditional Chinese medicine comprising 12 types of medicinal herbs, is often prescribed in China to increase bone strength. In this study, the antiosteoporotic effects of YSBGY were investigated in C57BL/6 mice afflicted with dexamethasone- (Dex-) induced osteoporosis (OP). The results showed that YSBGY reduced the interstitial edema in the liver and kidney of mice with Dex-induced OP. It also increased the number of trabecular bone elements and chondrocytes in the femur, promoted cortical bone thickness and trabecular bone density, and modulated the OP-related indexes in the femur and tibia of OP mice. It also increased the serum concentrations of type I collagen, osteocalcin, osteopontin, bone morphogenetic protein-2, bone morphogenetic protein receptor type 2, C-terminal telopeptide of type I collagen, and runt-related transcription factor-2 and reduced those of tartrate-resistant acid phosphatase 5 and nuclear factor of activated T cells in these mice, suggesting that it improved osteoblast differentiation and suppressed osteoclast differentiation. The anti-inflammatory effect of YSBGY was confirmed by the increase in the serum concentrations of interleukin- (IL-) 33 and the decrease in concentrations of IL-1, IL-7, and tumor necrosis factor-α in OP mice. Furthermore, YSBGY enhanced the serum concentrations of superoxide dismutase and catalase in these mice, indicating that it also exerted antioxidative effects. This is the first study to confirm the antiosteoporotic effects of YSBGY in mice with Dex-induced OP, and it showed that these effects may be related to the YSBGY-induced modulation of the osteoblast/osteoclast balance and serum concentrations of inflammatory factors. These results provide experimental evidence supporting the use of YSBGY for supporting bone formation in the clinical setting.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tao Huang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Liu P, Zhou B, Chen F, Dai Z, Kang Y. Effect of Trabecular Microstructure of Spinous Process on Spinal Fusion and Clinical Outcomes After Posterior Lumbar Interbody Fusion: Bone Surface/Total Volume as Independent Favorable Indicator for Fusion Success. World Neurosurg 2019; 136:e204-e213. [PMID: 31899388 DOI: 10.1016/j.wneu.2019.12.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We assessed the trabecular microarchitecture of the spinous process as an autograft and investigated its correlations with fusion success and clinical outcomes for patients undergoing posterior lumbar interbody fusion. METHODS Micro-computed tomography reconstruction techniques were used to scan cancellous bone specimens from spinous processes. We then measured the microarchitectural parameters for 105 subjects. RESULTS The patient cohort included 44 older men and 61 postmenopausal women with a minimum of 2-year follow-up data available. The complete fusion rate was 87.6% (92 of 105) at the last follow-up. When stratified by fusion status, the union group had significantly greater bone surface/total volume (BS/TV) and trabecular number but significantly lower trabecular separation than the nonunion group. No statistically significant differences were observed between the 2 groups in the clinical variables, except for the bone mineral density at the femoral neck (P = 0.028). On binomial logistic regression analysis, BS/TV was identified as an independent predictor for fusion success (odds ratio, 8.532; P = 0.032). The receiver operating characteristic curve showed that BS/TV had excellent performance in predicting successful fusion (area under the curve, 0.807). Using a cutoff value for BS/TV of 3.145, a greater BS/TV was significantly associated with visual analog scale scores for lower back pain 6 months postoperatively and lower Oswestry disability index scores at 12 and 24 months postoperatively but not with visual analog scale scores for leg pain. CONCLUSIONS Our data suggest that microstructural deterioration of the spinal process as an autograft has detrimental effects on spinal fusion and clinical outcomes for patients undergoing instrumented posterior lumbar interbody fusion. Specifically, the microstructural parameter BS/TV has good potential for assessing lumbar bone quality and predicting fusion success.
Collapse
Affiliation(s)
- Ping Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China
| | - Bin Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China
| | - Fei Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China
| | - Zhehao Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China.
| |
Collapse
|
17
|
Zhou Q, Xie F, Zhou B, Wang J, Wu B, Li L, Kang Y, Dai R, Jiang Y. Differentially expressed proteins identified by TMT proteomics analysis in bone marrow microenvironment of osteoporotic patients. Osteoporos Int 2019; 30:1089-1098. [PMID: 30739146 DOI: 10.1007/s00198-019-04884-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 01/06/2023]
Abstract
UNLABELLED We applied tandem mass tag (TMT)-based proteomics to investigate protein changes in bone marrow microenvironment of osteoporotic patients undergoing spine fusion. Multiple bioinformatics tools were used to identify and analyze 219 differentially expressed proteins. These proteins may be associated with the pathogenesis of osteoporosis. INTRODUCTION Bone marrow microenvironment is indispensable for the maintenance of bone homeostasis. We speculated that alterations of some factors in the microenvironment of osteoporotic subjects might influence the homeostasis. This study aimed to investigate the changes in the expression of protein factors in the bone marrow environment of osteoporosis. METHODS We performed a proteomics analysis in the vertebral body-derived bone marrow supernatant fluid from 8 Chinese patients undergoing posterior lumbar interbody fusion (4 osteoporotic vs. 4 non-osteoporotic) and used micro-CT to analyze the microstructural features of spinous processes from these patients. We further performed western blotting to validate the differential expressions of some proteins. RESULTS There was deteriorated bone microstructure in osteoporotic patients. Based on proteomics analysis, 172 upregulated and 47 downregulated proteins were identified. These proteins had multiple biological functions associated with osteoblast differentiation, lipid metabolism, and cell migration, and formed a complex protein-protein interaction network. We identified five major regulatory mechanisms, splicing, translation, protein degradation, cytoskeletal organization, and lipid metabolism, involved in the pathogenesis of osteoporosis. CONCLUSIONS There are various protein factors, such as DDX5, PSMC2, CSNK1A1, PLIN1, ILK, and TPM4, differentially expressed in the bone marrow microenvironment of osteoporotic patients, providing new ideas for finding therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Q Zhou
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - F Xie
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - B Zhou
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - J Wang
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - B Wu
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - L Li
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Y Kang
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - R Dai
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Y Jiang
- Osteoporosis and Arthritis Lab, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|