1
|
Gupta N, Gupta M. Off-label psychopharmacological interventions for autism spectrum disorders: strategic pathways for clinicians. CNS Spectr 2024; 29:10-25. [PMID: 37539695 DOI: 10.1017/s1092852923002389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The prevalence of autism spectrum disorder (ASD) continues to see a trend upward with a noticeable increase to 1 in 36 children less than 8 years of age in the recent MMWR. There are many factors linked to the substantially increased burden of seeking mental health services, and clinically these individuals are likely to present for impairments associated with co-occurring conditions. The advances in cutting-edge research and the understanding of co-occurring conditions in addition to psychosocial interventions have provided a window of opportunity for psychopharmacological interventions given the limited availability of therapeutics for core symptomatology. The off-label psychopharmacological treatments for these co-occurring conditions are central to clinical practice. However, the scattered evidence remains an impediment for practitioners to systematically utilize these options. The review collates the crucial scientific literature to provide stepwise treatment alternatives for individuals with ASD; with an aim to lead practitioners in making informed and shared decisions. There are many questions about the safety and tolerability of off-label medications; however, it is considered the best practice to utilize the available empirical data in providing psychoeducation for patients, families, and caregivers. The review also covers experimental medications and theoretical underpinnings to enhance further experimental studies. In summary, amidst the growing clinical needs for individuals with ASD and the lack of approved clinical treatments, the review addresses these gaps with a practical guide to appraise the risk and benefits of off-label medications.
Collapse
Affiliation(s)
| | - Mayank Gupta
- Southwood Psychiatric Hospital, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Beversdorf DQ, Ferguson B, Hunter S, Hirst K, Lolli B, Bellesheim KR, Barton AU, Muckerman J, Takahashi N, Selders K, Holem R, Sohl K, Dyke P, Stichter J, Mazurek M, Kanne S. Randomized controlled trial of propranolol on social communication and anxiety in children and young adults with autism spectrum disorder. Psychopharmacology (Berl) 2024; 241:19-32. [PMID: 38086927 DOI: 10.1007/s00213-023-06452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/18/2023] [Indexed: 01/09/2024]
Abstract
RATIONALE Autism spectrum disorder (ASD) is characterized by impaired social communication and is also frequently characterized by co-occurring anxiety. Propranolol is widely utilized to treat performance and public speaking anxiety. Single-dose psychopharmacological challenge studies suggested benefits using propranolol for verbal tasks and social interaction. OBJECTIVE We conducted a double-blinded, placebo-controlled trial of the β-adrenergic antagonist propranolol in ASD for social interaction, anxiety, and language. METHODS Seventy-four participants with ASD, age 7-24 years, were enrolled and randomized to a 12-week course of propranolol or placebo, with blinded assessments at baseline, 6 weeks, and 12 weeks. The primary outcome was the General Social Outcome Measure-2 (GSOM-2) for social interaction, and secondary outcomes were the Clinician Global Clinical Impression-Improvement (CGI-I) ratings independently conducted for social interaction, anxiety, and language at 6 weeks and 12 weeks. RESULTS Sixty-nine participants completed the 12-week visit. No significant effect of drug was found for the GSOM-2 or the CGI-I for social interaction or language. CGI-I for anxiety showed greater improvement with propranolol at the 12-week time point (p = 0.045, odds ratio = 2.58 (95% CI = 1.02-6.52). Expected decreases in heart rate and blood pressure were observed with propranolol, and side effects were uncommon. CONCLUSIONS Propranolol did not impact social interaction measures or language, but there were indications of a beneficial effect for anxiety. This will need confirmation in a larger multicenter trial, monitoring markers or characteristics to identify those participants most likely to respond to propranolol for anxiety, and determine whether there is a subset of participants that are responsive for other previously reported outcomes.
Collapse
Affiliation(s)
- David Q Beversdorf
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA.
- Departments of Radiology, Neurology, and Psychological Sciences, University of Missouri, Columbia, USA.
- William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, USA.
| | - Bradley Ferguson
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
- Department of Neurology, University of Missouri, Columbia, USA
| | - Samantha Hunter
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
| | - Kathy Hirst
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
| | - Bridget Lolli
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
| | | | - Amy U Barton
- Northwest Missouri State University, Maryville, USA
| | - Julie Muckerman
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
| | - Nicole Takahashi
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
| | - Kimberly Selders
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
| | - Ryan Holem
- Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, Columbia, MO, DC069.1065212, USA
- University of Missouri School of Medicine, Columbia, USA
| | - Kristin Sohl
- Deparment of Child Health, University of Missouri, Columbia, USA
| | - Peter Dyke
- Deparment of Child Health, University of Missouri, Columbia, USA
| | - Janine Stichter
- Department of Special Education, University of Missouri, Columbia, USA
| | | | | |
Collapse
|
3
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Li C, Zhang T, Li J. Identifying autism spectrum disorder in resting-state fNIRS signals based on multiscale entropy and a two-branch deep learning network. J Neurosci Methods 2023; 383:109732. [PMID: 36349567 DOI: 10.1016/j.jneumeth.2022.109732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The demand for early and precise identification of autism spectrum disorder (ASD) presented a challenge to the prediction of ASD with a non-invasive neuroimaging method. NEW METHOD A deep learning model was proposed to identify children with ASD using the resting-state functional near-infrared spectroscopy (fNIRS) signals. In this model, the input was the pattern of brain complexity represented by multiscale entropy of fNIRS time-series signals, with the purpose to solve the problem of deep learning analysis when the raw signals were limited by length and the number of subjects. The model consisted of a two-branch deep learning network, where one branch was a convolution neural network and the other was a long short-term memory neural network based on an attention mechanism. RESULTS Our model could achieve an identification accuracy of 94%. Further analysis used the SHapley Additive exPlanations (SHAP) method to balance the accuracy and the number of optical channels, thus reducing the complexity of fNIRS experiment. COMPARISON WITH PREVIOUSLY USED METHOD(S): in identification accuracy, our model was about 14% higher than previously used deep learning models with the same input and 4% higher than the same model but directly using fNIRS signals as input. We could obtain a discriminative accuracy of 90% with nearly half of the measurement channels by the SHAP method. CONCLUSIONS Using the pattern of brain complexity as input was effective in the deep learning model when the fNIRS signals were insufficient. With the SHAP method, it was possible to reduce the number of optical channels, while maintaining high accuracy in ASD identification.
Collapse
Affiliation(s)
- Chengxin Li
- South China Academy of Advanced Optoelectronics, South China Normal University, China
| | - Tingzhen Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, China
| | - Jun Li
- South China Academy of Advanced Optoelectronics, South China Normal University, China.
| |
Collapse
|
5
|
Effects of Physiological Signal Removal on Resting-State Functional MRI Metrics. Brain Sci 2022; 13:brainsci13010008. [PMID: 36671990 PMCID: PMC9856687 DOI: 10.3390/brainsci13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Resting-state fMRIs (rs-fMRIs) have been widely used for investigation of diverse brain functions, including brain cognition. The rs-fMRI has easily elucidated rs-fMRI metrics, such as the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), and degree centrality (DC). To increase the applicability of these metrics, higher reliability is required by reducing confounders that are not related to the functional connectivity signal. Many previous studies already demonstrated the effects of physiological artifact removal from rs-fMRI data, but few have evaluated the effect on rs-fMRI metrics. In this study, we examined the effect of physiological noise correction on the most common rs-fMRI metrics. We calculated the intraclass correlation coefficient of repeated measurements on parcellated brain areas by applying physiological noise correction based on the RETROICOR method. Then, we evaluated the correction effect for five rs-fMRI metrics for the whole brain: FC, fALFF, ReHo, VMHC, and DC. The correction effect depended not only on the brain region, but also on the metric. Among the five metrics, the reliability in terms of the mean value of all ROIs was significantly improved for FC, but it deteriorated for fALFF, with no significant differences for ReHo, VMHC, and DC. Therefore, the decision on whether to perform the physiological correction should be based on the type of metric used.
Collapse
|
6
|
Szeleszczuk Ł, Frączkowski D. Propranolol versus Other Selected Drugs in the Treatment of Various Types of Anxiety or Stress, with Particular Reference to Stage Fright and Post-Traumatic Stress Disorder. Int J Mol Sci 2022; 23:10099. [PMID: 36077489 PMCID: PMC9456064 DOI: 10.3390/ijms231710099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Propranolol, a non-cardioselective β1,2 blocker, is most commonly recognised for its application in the therapy of various cardiovascular conditions, such as hypertension, coronary artery disease, and tachyarrhythmias. However, due to its ability to cross the blood-brain barrier and affinity towards multiple macromolecules, not only adrenoreceptors, it has also found application in other fields. For example, it is one of the very few medications successfully applied in the treatment of stage fright. This review focuses on the application of propranolol in the treatment of various types of anxiety and stress, with particular reference to stage fright and post-traumatic stress disorder (PTSD). Both mechanisms of action as well as comparison with other therapies are presented. As those indications for propranolol are, in most countries, considered off-label, this review aims to gather information that can be useful while making a decision about the choice of propranolol as a drug in the treatment of those mental conditions.
Collapse
Affiliation(s)
- Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland
| | | |
Collapse
|
7
|
Cao P, Wen G, Liu X, Yang J, Zaiane OR. Modeling the dynamic brain network representation for autism spectrum disorder diagnosis. Med Biol Eng Comput 2022; 60:1897-1913. [DOI: 10.1007/s11517-022-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
8
|
MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput Biol Med 2022; 142:105239. [DOI: 10.1016/j.compbiomed.2022.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
|
9
|
Liu Y, Xu L, Yu J, Li J, Yu X. Identification of autism spectrum disorder using multi-regional resting-state data through an attention learning approach. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Zieminska E, Ruszczynska A, Augustyniak J, Toczylowska B, Lazarewicz JW. Zinc and Copper Brain Levels and Expression of Neurotransmitter Receptors in Two Rat ASD Models. Front Mol Neurosci 2021; 14:656740. [PMID: 34267627 PMCID: PMC8277171 DOI: 10.3389/fnmol.2021.656740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Zinc and copper are important trace elements necessary for the proper functioning of neurons. Impaired zinc and/or copper metabolism and signaling are implicated in many brain diseases, including autism (ASD). In our studies, autistic-like behavior in rat offsprings was induced by application to pregnant mothers valproic acid or thalidomide. Zinc and copper contents were measured in serum and brain structures: hippocampus, cerebral cortex, and cerebellum. Our research shows no interconnections in the particular metal concentrations measured in autistic animal brains and their sera. Based on patient researches, we studied 26 genes belonging to disturbed neurotransmitter pathways. In the same brain regions, we examined the expression of genes encoding proteins of cholinergic, adrenergic, serotonin, and dopamine receptors. In both rats’ ASD models, 17 out of the tested gene expression were decreased. In the cerebellum and cerebral cortex, expression of genes encoding cholinergic, adrenergic, and dopaminergic receptors decreased, whereas in the hippocampus only expression of serotoninergic receptors genes was downregulated. The changes in metals content observed in the rat brain can be secondary phenomena, perhaps elements of mechanisms that compensate for neurotransmission dysfunctions.
Collapse
Affiliation(s)
- Elzbieta Zieminska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ruszczynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy W Lazarewicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
DeMayo MM, Pokorski I, Song YJC, Thapa R, Patel S, Ambarchi Z, Soligo D, Sadeli I, Thomas EE, Hickie IB, Guastella AJ. The Feasibility of Magnetic Resonance Imaging in a Non-Selective Comprehensive Clinical Trial in Pediatric Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:1211-1222. [PMID: 33903957 DOI: 10.1007/s10803-021-05028-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
There is an increasing interest in using magnetic resonance imaging (MRI) as a tool for precision medicine in autism spectrum disorder (ASD). This study investigated the feasibility of MRI scanning in a large comprehensive, inclusive and test heavy clinical trial for children (aged 3-12 years) with ASD, without functioning constraints for participation. Of the 71 participants enrolled who consented to the MRI, 24 participants (38%) successfully completed an MRI scan at baseline along with other assessments. This scanning followed a familiarization procedure at two preceding visits. At post-treatment, 21 participants successfully completed the MRI scan. This study highlights the challenge of completing MRI assessments in ASD populations when conducted as one of a number of tests in a clinical trial.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Izabella Pokorski
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Yun J C Song
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Rinku Thapa
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Shrujna Patel
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Zahava Ambarchi
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | | | - Indra Sadeli
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Emma E Thomas
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Ian B Hickie
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.,Faculty of Medicine and Health, Brain and Mind Centre, Central Clinical School, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Adam J Guastella
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
12
|
Li X, Zhang K, He X, Zhou J, Jin C, Shen L, Gao Y, Tian M, Zhang H. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder. Neurosci Bull 2021; 37:1051-1071. [PMID: 33779890 DOI: 10.1007/s12264-021-00673-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/20/2020] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder associated with both genetic and environmental risks. Neuroimaging approaches have been widely employed to parse the neurophysiological mechanisms underlying ASD, and provide critical insights into the anatomical, functional, and neurochemical changes. We reviewed recent advances in neuroimaging studies that focused on ASD by using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-positron emission tomography (SPECT). Longitudinal structural MRI has delineated an abnormal developmental trajectory of ASD that is associated with cascading neurobiological processes, and functional MRI has pointed to disrupted functional neural networks. Meanwhile, PET and SPECT imaging have revealed that metabolic and neurotransmitter abnormalities may contribute to shaping the aberrant neural circuits of ASD. Future large-scale, multi-center, multimodal investigations are essential to elucidate the neurophysiological underpinnings of ASD, and facilitate the development of novel diagnostic biomarkers and better-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
| | - Xiao He
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Lesang Shen
- Department of Surgical Oncology, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
13
|
The Safety and Effectiveness of High-Dose Propranolol as a Treatment for Challenging Behaviors in Individuals With Autism Spectrum Disorders. J Clin Psychopharmacol 2020; 40:122-129. [PMID: 32134849 DOI: 10.1097/jcp.0000000000001175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE/BACKGROUND Individuals with autism spectrum disorders present with social communication deficits and a rigid adherence to sameness. Along with these symptoms, many individuals also present with severe challenging behaviors that place themselves as well as their families and communities at risk for injury. For these individuals, new and effective treatments are acutely needed. Propranolol has been used worldwide for over 50 years. Its primary indication is for hypertension, but there is evidence that, at higher doses, propranolol inhibits rage and anger through its effects on the central nervous system. This effect has been demonstrated in a variety of neuropsychiatric disorders. METHODS/PROCEDURES Here, we present 46 retrospective analyses of clinical cases that were followed by a psychiatrist. Propranolol was prescribed as an add-on to the patients' existing medications. The doses ranged from 120 to 960 mg per day (mean = 462 mg). FINDINGS/RESULTS Thirty-nine (85%) of 46 patients were found to be much improved or very much improved on the physician-rated Clinical Global Impression Improvement scale. There were few side effects noted, with only 2 subjects unable to tolerate the propranolol. IMPLICATIONS/CONCLUSIONS It appears that high-dose propranolol can be given safely with minimal adverse cardiovascular problems, provided that close clinical monitoring is maintained. A more rigorous clinical trial is needed to elucidate and verify its clinical utility, clinical practice parameters, and the effects of propranolol as a monotherapy versus as an add-on to the patient's existing medication regimen.
Collapse
|
14
|
Beversdorf DQ. The Role of the Noradrenergic System in Autism Spectrum Disorders, Implications for Treatment. Semin Pediatr Neurol 2020; 35:100834. [PMID: 32892961 PMCID: PMC7477304 DOI: 10.1016/j.spen.2020.100834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is frequently associated with anxiety and hyperarousal. While the pathological changes in the noradrenergic system in ASD are not entirely clear, a number of functional indices of the sympathetic/parasympathetic balance are altered in individuals with ASD, often with a high degree of inter-individual variability. The neuropsychopharmacological effects of α2 agonists and β-adrenergic antagonists make agents targeting these receptors of particular interest. α2 agonists have shown beneficial effects for attention deficit hyperactivity disorder (ADHD) and in other domains in individuals with ASD, but effects on core ASD symptoms are less clear. Case series and single dose psychopharmacological challenges suggest that treatment with β-adrenergic antagonists has beneficial effects on language and social domains. Additionally, psychophysiological markers and premorbid anxiety may predict response to these medications. As a result, β-adrenergic antagonists are currently being utilized in a clinical trial for improving core symptoms as well as anxiety in individuals with ASD.
Collapse
Affiliation(s)
- David Q Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, and the Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri-Columbia, Columbia, MO, William and Nancy Thompson Endowed Chair in Radiology..
| |
Collapse
|
15
|
Chen B. A preliminary study of atypical cortical change ability of dynamic whole-brain functional connectivity in autism spectrum disorder. Int J Neurosci 2020; 132:213-225. [PMID: 32762276 DOI: 10.1080/00207454.2020.1806837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Designing new objectively diagnostic methods of autism spectrum disorder (ASD) are burning questions. Dynamic functional connectivity (DFC) methodology based on fMRI data are an effective lever to investigate changeability evolution of signal synchronization in macroscopic neural activity patterns. METHODS Embracing the network dynamics concepts, this paper introduces changeability index (C-score)which is focused on time-varying aspects of FCs, and develops a new framework for researching the roots of ASD brains at resting states in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in C-scores of between atypical and typical DFCs of 30 healthy controls (HCs) and 48 ASD patients. RESULTS The abnormities of edge C-scores are found across widespread brain cortex in ASD brains. For whole brain regional C-scores of ASD patients, orbitofrontal middle cortex L, inferior triangular frontal gyrus L, middle occipital gyrus L, postcentral gyrus L, supramarginal L, supramarginal R, cerebellum 8 L, and cerebellum 10 Rare endowed with significantly different C-scores.At brain subsystems level, C-scores in left hemisphere, right hemisphere, top hemisphere, bottom hemisphere, frontal lobe, parietal lobe, occipital lobe, cerebellum sub systems are abnormal in ASD patients. CONCLUSIONS The ASD brains have whole-brain abnormity on widespread regions. Through the strict evidence-based study, it was found that the changeability index (C-score) is a meaningful biological marker to explore cortical activity in ASD.
Collapse
Affiliation(s)
- Bo Chen
- School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
16
|
Muscarinic and Nicotinic Modulation of Memory but not Verbal Problem-solving. Cogn Behav Neurol 2020; 32:278-283. [PMID: 31800488 DOI: 10.1097/wnn.0000000000000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aspects of cognitive flexibility are modulated by the noradrenergic system, which is important in arousal and attention. Acetylcholine also modulates arousal and attention, as well as working memory. Effects of muscarinic and nicotinic antagonism on memory are well established. Our purpose was to test whether muscarinic and nicotinic antagonism affect aspects of cognitive flexibility, specifically verbal problem-solving, as well as memory, given acetylcholine's role in attention and arousal. Eighteen participants attended three testing sessions. Two hours before testing, participants received either 0.6 mg scopolamine, 10 mg mecamylamine, or placebo. Then, participants were tested on three memory tasks (Buschke Selective Reminding Test [BSRT], California Verbal Learning Test [CVLT], Rey Complex Figure Test), two verbal problem-solving/cognitive flexibility tasks (Compound Remote Associates Test, a timed anagram test), and a spatial inductive reasoning task (Raven's Progressive Matrices). Task order and drug order were counterbalanced. Memory impairment was seen on one BSRT measure and multiple CVLT measures with scopolamine, and with one BSRT measure with mecamylamine. There were no effects of either drug on any of the tasks involving cognitive flexibility, including verbal problem-solving. Specific memory impairments were detected using muscarinic, and to a marginal extent, nicotinic antagonists, as expected, but no effect was seen on cognitive flexibility. Therefore, although both the noradrenergic and cholinergic systems play important roles in arousal and cortical signal-to-noise processing, the cholinergic system does not appear to have the same effect as the noradrenergic system on cognitive flexibility, including verbal problem-solving.
Collapse
|
17
|
Liu Y, Xu L, Li J, Yu J, Yu X. Attentional Connectivity-based Prediction of Autism Using Heterogeneous rs-fMRI Data from CC200 Atlas. Exp Neurobiol 2020; 29:27-37. [PMID: 32122106 PMCID: PMC7075658 DOI: 10.5607/en.2020.29.1.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental syndrome characterized by obvious drawbacks in sociality and communication. It has crucial significance to exactly discern the individuals with ASD and typical controls (TC). Previous imaging studies on ASD/TC identification have made remarkable progress in the exploration of objective as well as crucial biomarkers associated with ASD. However, glaring deficiency is manifested by the investigation on solely homogeneous and small datasets. Thus, we attempted to unveil some replicable and robust neural patterns of autism using a heterogeneous multi-site brain imaging dataset from ABIDE (Autism Brain Imaging Data Exchange). Experiments were carried out with an attention mechanism based on Extra-Trees algorithm, taking the study object of brain connectivity measured with the resting-state functional magnetic resonance imaging (fMRI) data of CC200 atlas. With cross-validation strategy, our proposed method resulted in a mean classification accuracy of 72.2% (sensitivity=68.6%, specificity=75.4%). It raised the precision of ASD prediction by about 2% and specificity by 3.2% in comparison with the most competitive reported effort. Connectivity analysis on the optimal model highlighted informative regions strongly involved in the social cognition as well as interaction, and manifested lower correlation between the anterior and posterior default mode network (DMN) in autistic individuals than controls. This observation is concordant with previous studies, which enables our proposed method to effectively identify the individuals with risk of ASD.
Collapse
Affiliation(s)
- Yaya Liu
- School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
| | - Lingyu Xu
- School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
| | - Jun Li
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jie Yu
- School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
| | - Xuan Yu
- School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China
| |
Collapse
|
18
|
Hegarty JP, Zamzow RM, Ferguson BJ, Christ SE, Porges EC, Johnson JD, Beversdorf DQ. Beta-adrenergic antagonism alters functional connectivity during associative processing in a preliminary study of individuals with and without autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2019; 24:795-801. [PMID: 31416333 DOI: 10.1177/1362361319868633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Beta-adrenergic antagonism (e.g. propranolol) has been associated with cognitive/behavioral benefits following stress-induced impairments and for some cognitive/behavioral domains in individuals with autism spectrum disorder. In this preliminary investigation, we examined whether the benefits of propranolol are associated with functional properties in the brain. Adolescents/adults (mean age = 22.54 years) with (n = 13) and without autism spectrum disorder (n = 13) attended three sessions in which propranolol, nadolol (beta-adrenergic antagonist that does not cross the blood-brain barrier), or placebo was administered before a semantic fluency task during functional magnetic resonance imaging. Autonomic nervous system measures and functional connectivity between language/associative processing regions and within the fronto-parietal control, dorsal attention, and default mode networks were examined. Propranolol was associated with improved semantic fluency performance, which was correlated with the baseline resting heart rate. Propranolol also altered network efficiency of regions associated with semantic processing and in an exploratory analysis reduced functional differences in the fronto-parietal control network in individuals with autism spectrum disorder. Thus, the cognitive benefits from beta-adrenergic antagonism may be generally associated with improved information processing in the brain in domain-specific networks, but individuals with autism spectrum disorder may also benefit from additional improvements in domain-general networks. The benefits from propranolol may also be able to be predicted from baseline autonomic nervous system measures, which warrants further investigation.
Collapse
Affiliation(s)
- John P Hegarty
- University of Missouri, USA.,Stanford University School of Medicine, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Beversdorf DQ. Neuropsychopharmacological regulation of performance on creativity-related tasks. Curr Opin Behav Sci 2019; 27:55-63. [PMID: 31106256 PMCID: PMC6519931 DOI: 10.1016/j.cobeha.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of factors affect performance on tasks associated with creativity. Two pharmacological systems in particularly been identified as important for their impact on creativity, the noradrenergic system and the dopaminergic systems. Furthermore, stress is also established as an important factor impacting performance, most likely mediated by its effects on these neurotransmitter systems. Herein, we review the current literature on the relationships between stress, the noradrenergic system, the dopaminergic system, and other pharmacological factors and their effects on performance on tasks associated with creativity.
Collapse
Affiliation(s)
- David Q Beversdorf
- William and Nancy Thompson Endowed Chair in Radiology, University of Missouri
| |
Collapse
|
20
|
Kurosaki H, Nakahata K, Donishi T, Shiro M, Ino K, Terada M, Kawamata T, Kaneoke Y. Effects of perinatal blood pressure on maternal brain functional connectivity. PLoS One 2018; 13:e0203067. [PMID: 30153298 PMCID: PMC6112678 DOI: 10.1371/journal.pone.0203067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/14/2018] [Indexed: 01/21/2023] Open
Abstract
Perinatal hypertensive disorder including pre-eclampsia is a systemic syndrome that occurs in 3–5% of pregnant women. It can result in various degrees of brain damage. A recent study suggested that even gestational hypertension without proteinuria can cause cardiovascular or cognitive impairments later in life. We hypothesized that perinatal hypertension affects the brain functional connectivity (FC) regardless of the clinical manifestation of brain functional impairment. In the present study, we analyzed regional global connectivity (rGC) strength (mean cross-correlation coefficient between a brain region and all other regions) using resting-state functional magnetic resonance imaging to clarify brain FC changes associated with perinatal blood pressure using data from 16 women with a normal pregnancy and 21 pregnant women with pre-eclampsia. The rGC values in the bilateral orbitofrontal gyri were negatively correlated with diastolic blood pressure (dBP), which could not be explained by other pre-eclampsia symptoms. The strength of FC seeding at the left orbitofrontal gyrus was negatively correlated with dBP in the anterior cingulate gyri and right middle frontal gyrus. These results suggest that dBP elevation during pregnancy can affect the brain FC. Since FC is known to be associated with various brain functions and diseases, our findings are important for elucidating the neural correlate of cognitive impairments related to hypertension in pregnancy.
Collapse
Affiliation(s)
- Hiromichi Kurosaki
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
- * E-mail: (HK); (KN)
| | - Katsutoshi Nakahata
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
- * E-mail: (HK); (KN)
| | - Tomohiro Donishi
- Department of System Neurophysiology, Graduate School of Wakayama Medical University, Wakayama, Japan
| | - Michihisa Shiro
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama, Japan
| | | | - Tomoyuki Kawamata
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Yoshiki Kaneoke
- Department of System Neurophysiology, Graduate School of Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
21
|
Frye RE. Social Skills Deficits in Autism Spectrum Disorder: Potential Biological Origins and Progress in Developing Therapeutic Agents. CNS Drugs 2018; 32:713-734. [PMID: 30105528 PMCID: PMC6105175 DOI: 10.1007/s40263-018-0556-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is defined by two core symptoms: a deficit in social communication and the presence of repetitive behaviors and/or restricted interests. Currently, there is no US Food and Drug Administration-approved drug for these core symptoms. This article reviews the biological origins of the social function deficit associated with autism spectrum disorder and the drug therapies with the potential to treat this deficit. A review of the history of autism demonstrates that a deficit in social interaction has been the defining feature of the concept of autism from its conception. Abnormalities identified in early social skill development and an overview of the pathophysiology abnormalities associated with autism spectrum disorder are discussed as are the abnormalities in brain circuits associated with the social function deficit. Previous and ongoing clinical trials examining agents that have the potential to improve social deficits associated with autism spectrum disorder are discussed in detail. This discussion reveals that agents such as oxytocin and propranolol are particularly promising and undergoing active investigation, while other agents such as vasopressin agonists and antagonists are being activity investigated but have limited published evidence at this time. In addition, agents such as bumetanide and manipulation of the enteric microbiome using microbiota transfer therapy appear to have promising effects on core autism spectrum disorder symptoms including social function. Other pertinent issues associated with developing treatments in autism spectrum disorder, such as disease heterogeneity, high placebo response rates, trial design, and the most appropriate way of assessing effects on social skills (outcome measures), are also discussed.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, 85016, USA.
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
22
|
Sagar-Ouriaghli I, Lievesley K, Santosh PJ. Propranolol for treating emotional, behavioural, autonomic dysregulation in children and adolescents with autism spectrum disorders. J Psychopharmacol 2018; 32:641-653. [PMID: 29484909 DOI: 10.1177/0269881118756245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To date, there is no single medication prescribed to alleviate all the core symptoms of Autism Spectrum Disorder (ASD; National Institute of Health and Care Excellence, 2016). Both serotonin reuptake inhibitors and drugs for psychosis possess therapeutic drawbacks when managing anxiety and aggression in ASD. This review sought to appraise the use of propranolol as a pharmacological alternative when managing emotional, behavioural and autonomic dysregulation (EBAD) and other symptoms. MATERIALS AND METHODS Sixteen reports examined the administration of propranolol in the context of ASD. RESULTS Sixteen reports broadly covered cognitive domains, neural correlates, and behavioural domains. From the eight single-dose clinical trials, propranolol led to significant improvements in cognitive performance - verbal problem solving, social skills, mouth fixation, and conversation reciprocity; and changes in neural correlates - improvement in semantic networks and functional connectivity. The remaining eight case series and single case reports showed improvements in EBAD, anxiety, aggressive, self-injurious and hypersexual behaviours. Additionally, propranolol significantly improved similar behavioural domains (aggression and self-injury) for those with acquired brain injury. CONCLUSION This review indicates that propranolol holds promise for EBAD and cognitive performance in ASD. Given the lack of good quality clinical trials, randomised controlled trials are warranted to explore the efficacy of propranolol in managing EBAD in ASD.
Collapse
Affiliation(s)
| | - Kate Lievesley
- 1 Department of Child and Adolescent Psychiatry, King's College London, UK.,3 HealthTracker Ltd., Gillingham, UK
| | - Paramala J Santosh
- 1 Department of Child and Adolescent Psychiatry, King's College London, UK.,2 Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, UK.,3 HealthTracker Ltd., Gillingham, UK
| |
Collapse
|
23
|
Neuroimaging in neurodevelopmental disorders: focus on resting-state fMRI analysis of intrinsic functional brain connectivity. Curr Opin Neurol 2018; 31:140-148. [DOI: 10.1097/wco.0000000000000536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|