1
|
Rosano C, Chahine LM, Gay EL, Coen PM, Bohnen NI, Studenski SA, LoPresti B, Rosso AL, Huppert T, Newman AB, Royse SK, Kritchevsky SB, Glynn NW. Higher Striatal Dopamine is Related With Lower Physical Performance Fatigability in Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae209. [PMID: 39208421 PMCID: PMC11447735 DOI: 10.1093/gerona/glae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Fatigability in community-dwelling older adults is highly prevalent and disabling, but lacks a treatment. Greater nigrostriatal dopaminergic signaling can ameliorate performance fatigability in healthy young adults, but its role in community-dwelling older adults is not known. We hypothesized that higher nigrostriatal dopaminergic integrity would be associated with lower performance fatigability, independent of cardiopulmonary and musculoskeletal energetics and other health conditions. METHODS In 125 older adults participating in the Study of Muscle, Mobility and Aging, performance fatigability was measured as performance deterioration during a fast 400 m walk (% slowing down from the 2nd to the 9th lap). Nigrostriatal DA integrity was measured using (+)-[11C] dihydrotetrabenazine (DTBZ) PET imaging. The binding signal was obtained separately for the subregions regulating sensorimotor (posterior putamen), reward (ventral striatum), and executive control processes (dorsal striatum). Multivariable linear regression models of performance fatigability (dependent variable) estimated the coefficients of dopamine integrity in striatal subregions, adjusted for demographics, comorbidities, and cognition. Models were further adjusted for skeletal muscle energetics (via biopsy) and cardiopulmonary fitness (via cardiopulmonary exercise testing). RESULTS Higher [11C]-DTBZ binding in the posterior putamen was significantly associated with lower performance fatigability (demographic-adjusted standardized β = -1.08, 95% CI: -1.96, -0.20); results remained independent of adjustment for other covariates, including cardiopulmonary and musculoskeletal energetics. Associations with other striatal subregions were not significant. DISCUSSION Dopaminergic integrity in the sensorimotor striatum may influence performance fatigability in older adults without clinically overt diseases, independent of other aging systems.
Collapse
Affiliation(s)
- Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lana M Chahine
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emma L Gay
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul M Coen
- AdventHealth Research Institute, Orlando, Florida, USA
| | - Nico I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Brian LoPresti
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Theodore Huppert
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B Kritchevsky
- Gerontology and Geriatric Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Nancy W Glynn
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Liu J, Li C, Fang J, Xu H, Zhang X, Zhao F. Effects of physical training combined with transcranial direct current stimulation on maximal strength and lower limb explosive strength in healthy adults. Front Sports Act Living 2024; 6:1446588. [PMID: 39371110 PMCID: PMC11449775 DOI: 10.3389/fspor.2024.1446588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
Objective The purpose of this systematic review and meta-analysis was to investigates whether transcranial direct current stimulation applied during physical training increases muscle strength in comparison with sham tDCS combined with physical training. Methods Randomized controlled trials of the effects of tDCS combined physical training intervention on muscle strength and cortical excitability were collected by searching Web of Science, Pubmed, EBSCO, CNKI. The retrieval date ends in April 2024. 11 randomized controlled trials are finally included. The total sample size of the study is 338. The experimental group was subjected to tDCS combined with physical training intervention, and the control group was physical training combined with sham tDCS intervention. Results There is a significant increase in maximal strength (SMD = 0.38; 95% CI: 0.09, 0.67; p = 0.01) and lower limb explosive strength (MD = 2.90; 95% CI: 1.06, 4.74; p = 0.002) when physical training was performed with tDCS, but not following physical training combined with sham tDCS. Subgroup analysis of the subject population showed an increase in muscle strength in those with training experience following tDCS combined with physical training (SMD = 0.39; 95% CI: 0.08, 0.70; p = 0.01), but not for those without training experience (SMD = 0.29; 95% CI: -0.06, 0.63; p = 0.10). Motor evoked potential (MEP) wave amplitude increased significantly following physical training with tDCS (SMD = 0.71; 95% CI: 0.18, 1.24; p = 0.008), but was not different between groups (SMD = 0.16; 95% CI: -0.33, 0.65; p = 0.52). Conclusions tDCS combined with physical training intervention can improve muscle strength, lower limb explosive strength and cerebral cortex excitability. Compared to tDCS combined with training of small muscle groups, tDCS combined with training of large muscle groups was more effective in improving muscle strength. Muscle strength was more likely to improve after tDCS combined with physical training in people with physical training experience compared with people without physical training experience. The combination of tDCS with physical training intervention and the sham-tDCS with physical training intervention both increased cortical excitability. Systematic Review Registration https://www.crd.york.ac.uk/, PROSPERO, identifier (CRD42024550454).
Collapse
Affiliation(s)
- Jintong Liu
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Chunlei Li
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Junhui Fang
- Sport Training Center, China Institute of Sport Science, Beijing, China
| | - Haokai Xu
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Xingyue Zhang
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Fan Zhao
- Competitive Sports Department, Beijing Research Institute of Sports Science, Beijing, China
| |
Collapse
|
3
|
Uehara L, Coelho DB, Baptista AF, Santana L, Moreira RJD, Zana Y, Malosá L, Lima T, Valentim G, Cardenas-Rojas A, Fregni F, Corrêa JCF, Corrêa FI. Does Transcranial Direct Current Stimulation reduce central and peripheral muscle fatigue in recreational runners? A triple-blind, sham-controlled, randomized, crossover clinical study. Braz J Phys Ther 2024; 28:101088. [PMID: 38936315 PMCID: PMC11260918 DOI: 10.1016/j.bjpt.2024.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Runners seek health benefits and performance improvement. However, fatigue might be considered a limiting factor. Transcranial Direct Current Stimulation (tDCS) has been investigated to improve performance and reduce fatigue in athletes. While some studies showing that tDCS may improve a variety of physical measures, other studies failed to show any benefit. OBJECTIVE To evaluate the acute effects of tDCS on central and peripheral fatigue compared to a sham intervention in recreational runners. METHODS This is a triple-blind, controlled, crossover study of 30 recreational runners who were randomized to receive one of the two interventions, anodal or sham tDCS, after the fatigue protocol. The interventions were applied to the quadriceps muscle hotspot for 20 min. Peak torque, motor-evoked potential, and perceived exertion rate were assessed before and after the interventions, and blood lactate level was assessed before, during, and after the interventions. A generalized estimated equation was used to analyze the peak torque, motor-evoked potential, and blood lactate data, and the Wilcoxon test was used for perceived exertion rate data. RESULTS Our findings showed no difference between anodal tDCS and sham tDCS on peak torque, motor-evoked potential, blood lactate, and perceived exertion rate. CONCLUSION The tDCS protocol was not effective in improving performance and reducing fatigue compared to a sham control intervention. BRAZILIAN CLINICAL TRIALS REGISTRY RBR-8zpnxz.
Collapse
Affiliation(s)
- Laura Uehara
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Lucas Santana
- Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | | | - Yossi Zana
- Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Luciana Malosá
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Taiane Lima
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Gabriela Valentim
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - João Carlos Ferrari Corrêa
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Fernanda Ishida Corrêa
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Ramos L, Ramos TAM, Almeida RFD, da Silva-Rocha JV, Zimerer C, Arêas FZ. Acute anodal transcranial direct current stimulation improves the performance of professional rowers. Front Sports Act Living 2024; 6:1310856. [PMID: 38699626 PMCID: PMC11063233 DOI: 10.3389/fspor.2024.1310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction The aim of the present study was to evaluate the influence of acute transcranial direct current stimulation (tDCS) on physical and subjective responses in professional rowing during the 2,000-m time trial test. Methods Seven rowers (age 20.86 ± 4.49 years; weight 71.66 ± 7.97 kg) participated in this randomized triple-blind trial with a crossover experimental design. The protocol consists of 2 days with different conditions (anodal and sham). The tDCS anodic stimulation conducted was 2 mA for 20 min in the left temporal cortex (2.5 cm from the F7 zone and 2.5 cm from the T3 zone), targeting the left insular cortex. In the sham moment, the participants experienced 30 s of stimulation. Afterward, they performed a standardized progressive warm-up for 15 min, following the Brazilian Rowing Confederation's assessment protocols, and rested for 3 min before the test started. All procedures were made on an indoor rowing machine, which allowed the capture of performance variables such as time performed, power in watts (W), pace (m/min), and stroke rate (strokes/min). The ratings of perceived exertion [Borg scale (CR-20)] were recorded in each 2-min during the test. Results The results presented differences in power [Z: -2.371; p = 0.018; effect size (ES) = -0.896 (large)] and pace [Z: -2.371; p = 0.018; ES = -0.896 (large)] and time performance [Z: -1.612; p = 0.107; ES = -0.609 (large)] throughout the protocol for the anodal moment. Discussion However, no differences for the other variables were found. According to the results, the current tDCS with the present protocol improved the physical performance at the 2,000-m time trial Test providing ergogenic aid.
Collapse
Affiliation(s)
- Luciano Ramos
- Physiotherapy Course at the FAVI—Victorian Higher Education Association, Vitória, Brazil
- Neuromodulation Institute, Vitória, Brazil
| | - Tatiana Aparecida Magacho Ramos
- Physiotherapy Course at the FAVI—Victorian Higher Education Association, Vitória, Brazil
- Neuromodulation Institute, Vitória, Brazil
| | - Rodrigo Freire De Almeida
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
| | - Jader Vinicius da Silva-Rocha
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
| | - Carla Zimerer
- Postgraduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória, Brazil
- Telecommunications Laboratory, Federal University of Espírito Santo, Vitória, Brazil
| | - Fernando Zanela Arêas
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
- Physiotherapy Course at the Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
5
|
Zhan J, Yu C, Xiao S, Shen B, Zhang C, Zhou J, Fu W. Effects of high-definition transcranial direct current stimulation on the cortical-muscular functional coupling and muscular activities of ankle dorsi-plantarflexion under running-induced fatigue. Front Physiol 2023; 14:1263309. [PMID: 37841316 PMCID: PMC10570418 DOI: 10.3389/fphys.2023.1263309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve motor control performance under fatigue. However, the influences of tDCS on factors contributing to motor control (e.g., cortical-muscular functional coupling, CMFC) are unclear. This double-blinded and randomized study examined the effects of high-definition tDCS (HD-tDCS) on muscular activities of dorsiflexors and plantarflexors and CMFC when performing ankle dorsi-plantarflexion under fatigue. Twenty-four male adults were randomly assigned to receive five sessions of 20-min HD-tDCS targeting primary motor cortex (M1) or sham stimulation. Three days before and 1 day after the intervention, participants completed ankle dorsi-plantarflexion under fatigue induced by prolonged running exercise. During the task, electroencephalography (EEG) of M1 (e.g., C1, Cz) and surface electromyography (sEMG) of several muscles (e.g., tibialis anterior [TA]) were recorded synchronously. The corticomuscular coherence (CMC), root mean square (RMS) of sEMG, blood lactate, and maximal voluntary isometric contraction (MVC) of ankle dorsiflexors and plantarflexors were obtained. Before stimulation, greater beta- and gamma-band CMC between M1 and TA were significantly associated with greater RMS of TA (r = 0.460-0.619, p = 0.001-0.024). The beta- and gamma-band CMC of C1-TA and Cz-TA, and RMS of TA and MVC torque of dorsiflexors were significantly higher after HD-tDCS than those at pre-intervention in the HD-tDCS group and post-intervention in the control group (p = 0.002-0.046). However, the HD-tDCS-induced changes in CMC and muscle activities were not significantly associated (r = 0.050-0.128, p = 0.693-0.878). HD-tDCS applied over M1 can enhance the muscular activities of ankle dorsiflexion under fatigue and related CMFC.
Collapse
Affiliation(s)
- Jianglong Zhan
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bin Shen
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chuyi Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Maudrich T, Ragert P, Perrey S, Kenville R. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis. Brain Stimul 2022; 15:1517-1529. [PMID: 36442774 DOI: 10.1016/j.brs.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a promising and feasible method to improve motor performance in healthy and clinical populations. However, the potential of tDCS to enhance sport-specific motor performance in athletes remains elusive. OBJECTIVE We aimed at analyzing the acute effects of a single anodal tDCS session on sport-specific motor performance changes in athletes compared to sham. METHODS A systematic review and meta-analysis was conducted in the electronic databases PubMed, Web of Science, and SPORTDiscus. The meta-analysis was performed using an inverse variance method and a random-effects model. Additionally, two subgroup analyses were conducted (1) depending on the stimulated brain areas (primary motor cortex (M1), temporal cortex (TC), prefrontal cortex (PFC), cerebellum (CB)), and (2) studies clustered in subgroups according to different sports performance domains (endurance, strength, visuomotor skill). RESULTS A total number of 19 studies enrolling a sample size of 258 athletes were deemed eligible for inclusion. Across all included studies, a significant moderate standardized mean difference (SMD) favoring anodal tDCS to enhance sport-specific motor performance could be observed. Subgroup analysis depending on cortical target areas of tDCS indicated a significant moderate SMD in favor of anodal tDCS compared to sham for M1 stimulation. CONCLUSION A single anodal tDCS session can lead to performance enhancement in athletes in sport-specific motor tasks. Although no definitive conclusions can be drawn regarding the modes of action as a function of performance domain or stimulation site, these results imply intriguing possibilities concerning sports performance enhancement through anodal M1 stimulation.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Resting-State Neuronal Activity and Functional Connectivity Changes in the Visual Cortex after High Altitude Exposure: A Longitudinal Study. Brain Sci 2022; 12:brainsci12060724. [PMID: 35741609 PMCID: PMC9221383 DOI: 10.3390/brainsci12060724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
Damage to the visual cortex structures after high altitude exposure has been well clarified. However, changes in the neuronal activity and functional connectivity (FC) of the visual cortex after hypoxia/reoxygenation remain unclear. Twenty-three sea-level college students, who took part in 30 days of teaching at high altitude (4300 m), underwent routine blood tests, visual behavior tests, and magnetic resonance imaging scans before they went to high altitude (Test 1), 7 days after they returned to sea level (Test 2), as well as 3 months (Test 3) after they returned to sea level. In this study, we investigated the hematological parameters, behavioral data, and spontaneous brain activity. There were significant differences among the tests in hematological parameters and spontaneous brain activity. The hematocrit, hemoglobin concentration, and red blood cell count were significantly increased in Test 2 as compared with Tests 1 and 3. As compared with Test 1, Test 3 increased amplitudes of low-frequency fluctuations (ALFF) in the right calcarine gyrus; Tests 2 and 3 increased ALFF in the right supplementary motor cortex, increased regional homogeneity (ReHo) in the left lingual gyrus, increased the voxel-mirrored homotopic connectivity (VMHC) value in the motor cortex, and decreased FC between the left lingual gyrus and left postcentral gyrus. The color accuracy in the visual task was positively correlated with ALFF and ReHo in Test 2. Hypoxia/reoxygenation increased functional connection between the neurons within the visual cortex and the motor cortex but decreased connection between the visual cortex and motor cortex.
Collapse
|
8
|
Cao L, Zhang Y, Huang R, Li L, Xia F, Zou L, Yu Q, Lin J, Herold F, Perrey S, Mueller P, Dordevic M, Loprinzi PD, Wang Y, Ma Y, Zeng H, Qu S, Wu J, Ren Z. Structural and functional brain signatures of endurance runners. Brain Struct Funct 2020; 226:93-103. [PMID: 33159547 DOI: 10.1007/s00429-020-02170-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
Although endurance running (ER) seems to be a simple repetitive exercise, good ER performance also requires and relies on multiple cognitive and motor control processes. Most of previous neuroimaging studies on ER were conducted using a single MRI modality, yet no multimodal study to our knowledge has been performed in this regard. In this study, we used multimodal MRI data to investigate the brain structural and functional differences between endurance runners (n = 22; age = 26.27 ± 6.07 years; endurance training = 6.23 ± 2.41 years) and healthy controls (HCs; n = 20; age = 24.60 ± 4.14 years). Compared with the HCs, the endurance runners showed greater gray matter volume (GMV) and cortical surface area in the left precentral gyrus, which at the same time had higher functional connectivity (FC) with the right postcentral and precentral gyrus. Subcortically, the endurance runners showed greater GMV in the left hippocampus and regional inflation in the right hippocampus. Using the bilateral hippocampi as seeds, further seed-based FC analyses showed higher hippocampal FC with the supplementary motor area, middle cingulate cortex, and left posterior lobe of the cerebellum. Moreover, compared with the HCs, the endurance runners also showed higher fractional anisotropy in several white matter regions, involving the corpus callosum, left internal capsule, left corona radiata, left external capsule, left posterior lobe of cerebellum and bilateral precuneus. Taken together, our findings provide several lines of evidence for the brain structural and functional differences between endurance runners and HCs. The current data suggest that these brain characteristics may have arisen as a result of regular ER training; however, whether they represent the neural correlates underlying the good ER performances of the endurance runners requires further investigations.
Collapse
Affiliation(s)
- Long Cao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Lunxiong Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Fengguang Xia
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Liye Zou
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, 518060, China
| | - Qian Yu
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, 518060, China
| | - Jingyuan Lin
- Exercise and Mental Health Laboratory, Shenzhen University, Shenzhen, 518060, China
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Neurology, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Patrick Mueller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Neurology, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Milos Dordevic
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Neurology, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS, USA
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yudan Ma
- Jilin Institute of Sport Science, Changchun, 130022, China
| | - Hongfa Zeng
- Department of Physical Education, Shenzhen University, Shenzhen, 518060, China
| | - Sicen Qu
- Department of Physical Education, Shenzhen University, Shenzhen, 518060, China
| | - Jinlong Wu
- Department of Physical Education, Shenzhen University, Shenzhen, 518060, China
| | - Zhanbing Ren
- Department of Physical Education, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Gao Y, Cavuoto L, Schwaitzberg S, Norfleet JE, Intes X, De S. The Effects of Transcranial Electrical Stimulation on Human Motor Functions: A Comprehensive Review of Functional Neuroimaging Studies. Front Neurosci 2020; 14:744. [PMID: 32792898 PMCID: PMC7393222 DOI: 10.3389/fnins.2020.00744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
Transcranial electrical stimulation (tES) is a promising tool to enhance human motor skills. However, the underlying physiological mechanisms are not fully understood. On the other hand, neuroimaging modalities provide powerful tools to map some of the neurophysiological biomarkers associated with tES. Here, a comprehensive review was undertaken to summarize the neuroimaging evidence of how tES affects human motor skills. A literature search has been done on the PubMed database, and 46 relative articles were selected. After reviewing these articles, we conclude that neuroimaging techniques are feasible to be coupled with tES and offer valuable information of cortical excitability, connectivity, and oscillations regarding the effects of tES on human motor behavior. The biomarkers derived from neuroimaging could also indicate the motor performance under tES conditions. This approach could advance the understanding of tES effects on motor skill and shed light on a new generation of adaptive stimulation models.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lora Cavuoto
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States
| | | | - Jack E. Norfleet
- U.S. Army Combat Capabilities Development Command, Soldier Center (CCDC SC), Orlando, FL, United States
- SFC Paul Ray Smith Simulation & Training Technology Center (STTC), Orlando, FL, United States
- Medical Simulation Research Branch (MSRB), Orlando, FL, United States
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
10
|
Workman CD, Kamholz J, Rudroff T. Increased leg muscle fatigability during 2 mA and 4 mA transcranial direct current stimulation over the left motor cortex. Exp Brain Res 2020; 238:333-343. [PMID: 31919540 DOI: 10.1007/s00221-019-05721-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Transcranial direct current stimulation (tDCS) using intensities ≤ 2 mA on physical and cognitive outcomes has been extensively investigated. Studies comparing the effects of different intensities of tDCS have yielded mixed results and little is known about how higher intensities (> 2 mA) affect outcomes. This study examined the effects of tDCS at 2 mA and 4 mA on leg muscle fatigability. This was a double-blind, randomized, sham-controlled study. Sixteen healthy young adults underwent tDCS at three randomly ordered intensities (sham, 2 mA, 4 mA). Leg muscle fatigability of both legs was assessed via isokinetic fatigue testing (40 maximal reps, 120°/s). Torque- and work-derived fatigue indices (FI-T and FI-W, respectively), as well as total work performed (TW), were calculated. FI-T of the right knee extensors indicated increased fatigability in 2 mA and 4 mA compared with sham (p = 0.01, d = 0.73 and p < 0.001, d = 1.61, respectively). FI-W of the right knee extensors also indicated increased fatigability in 2 mA and 4 mA compared to sham (p = 0.01, d = 0.57 and p < 0.001, d = 1.12, respectively) and 4 mA compared with 2 mA (p = 0.034, d = 0.37). tDCS intensity did not affect TW performed. The 2 mA and 4 mA tDCS intensities increased the fatigability of the right knee extensors in young, healthy participants, potentially from altered motor unit recruitment/discharge rate or cortical hyperexcitability. Despite this increase in fatigability, the TW performed in both these conditions was not different from sham.
Collapse
Affiliation(s)
- Craig D Workman
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA
| | - John Kamholz
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
11
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
12
|
Rice SM, Gwyther K, Santesteban-Echarri O, Baron D, Gorczynski P, Gouttebarge V, Reardon CL, Hitchcock ME, Hainline B, Purcell R. Determinants of anxiety in elite athletes: a systematic review and meta-analysis. Br J Sports Med 2019; 53:722-730. [PMID: 31097452 PMCID: PMC6579501 DOI: 10.1136/bjsports-2019-100620] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective To identify and quantify determinants of anxiety symptoms and disorders experienced by elite athletes. Design Systematic review and meta-analysis. Data sources Five online databases (PubMed, SportDiscus, PsycINFO, Scopus and Cochrane) were searched up to November 2018 to identify eligible citations. Eligibility criteria for selecting studies Articles were included if they were published in English, were quantitative studies and measured a symptom-level anxiety outcome in competing or retired athletes at the professional (including professional youth), Olympic or collegiate/university levels. Results and summary We screened 1163 articles; 61 studies were included in the systematic review and 27 of them were suitable for meta-analysis. Overall risk of bias for included studies was low. Athletes and non-athletes had no differences in anxiety profiles (d=−0.11, p=0.28). Pooled effect sizes, demonstrating moderate effects, were identified for (1) career dissatisfaction (d=0.45; higher anxiety in dissatisfied athletes), (2) gender (d=0.38; higher anxiety in female athletes), (3) age (d=−0.34; higher anxiety for younger athletes) and (4) musculoskeletal injury (d=0.31; higher anxiety for injured athletes). A small pooled effect was found for recent adverse life events (d=0.26)—higher anxiety in athletes who had experienced one or more recent adverse life events. Conclusion Determinants of anxiety in elite populations broadly reflect those experienced by the general population. Clinicians should be aware of these general and athlete-specific determinants of anxiety among elite athletes.
Collapse
Affiliation(s)
- Simon M Rice
- Research and Translation, Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia .,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Gwyther
- Research and Translation, Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Olga Santesteban-Echarri
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - David Baron
- Center for Health and Sport, Western University of Health Sciences, Pomona, California, USA
| | - Paul Gorczynski
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Vincent Gouttebarge
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef, The Netherlands.,AMC/VUmc IOC Research Center of Excellence, Amsterdam Collaboration on Health and Safety in Sports (ACHSS), Amsterdam, The Netherlands
| | - Claudia L Reardon
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,University Health Services, University of Wisconsin, Madison, Wisconsin, USA
| | - Mary E Hitchcock
- Ebling Library for the Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian Hainline
- National Collegiate Athletic Association (NCAA), Indianapolis, Indiana, USA
| | - Rosemary Purcell
- Research and Translation, Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|