1
|
Wang H, Zhao Q, Zhang Y, Ma J, Lei M, Zhang Z, Xue H, Liu J, Sun Z, Xu J, Zhai Y, Wang Y, Cai M, Zhu W, Liu F. Shared genetic architecture of cortical thickness alterations in major depressive disorder and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111121. [PMID: 39154931 DOI: 10.1016/j.pnpbp.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and schizophrenia (SCZ) are heritable brain disorders characterized by alterations in cortical thickness. However, the shared genetic basis for cortical thickness changes in these disorders remains unclear. METHODS We conducted a systematic literature search on cortical thickness in MDD and SCZ through PubMed and Web of Science. A coordinate-based meta-analysis was performed to identify cortical thickness changes. Additionally, utilizing summary statistics from the largest genome-wide association studies for depression (Ncase = 268,615, Ncontrol = 667,123) and SCZ (Ncase = 53,386, Ncontrol = 77,258), we explored shared genomic loci using conjunctional false discovery rate (conjFDR) analysis. Transcriptome-neuroimaging association analysis was then employed to identify shared genes associated with cortical thickness alterations, and enrichment analysis was finally carried out to elucidate the biological significance of these genes. RESULTS Our search yielded 34 MDD (Ncase = 1621, Ncontrol = 1507) and 19 SCZ (Ncase = 1170, Ncontrol = 1043) neuroimaging studies for cortical thickness meta-analysis. Specific alterations in the left supplementary motor area were observed in MDD, while SCZ exhibited widespread reductions in various brain regions, particularly in the frontal and temporal areas. The conjFDR approach identified 357 genomic loci jointly associated with MDD and SCZ. Within these loci, 55 genes were found to be associated with cortical thickness alterations in both disorders. Enrichment analysis revealed their involvement in nervous system development, apoptosis, and cell communication. CONCLUSION This study revealed the shared genetic architecture underlying cortical thickness alterations in MDD and SCZ, providing insights into common neurobiological pathways. The identified genes and pathways may serve as potential transdiagnostic markers, informing precision medicine approaches in psychiatric care.
Collapse
Affiliation(s)
- He Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiyu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yijing Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Juanwei Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Minghuan Lei
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhihui Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Xue
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiawei Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zuhao Sun
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinglei Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Zhai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450000, China.
| | - Wenshuang Zhu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
2
|
Querry M, Botzung A, Cretin B, Demuynck C, Muller C, Ravier A, Schorr B, Mondino M, Sanna L, de Sousa PL, Philippi N, Blanc F. Neuroanatomical substrates of depression in dementia with Lewy bodies and Alzheimer's disease. GeroScience 2024; 46:5725-5744. [PMID: 38750385 PMCID: PMC11493943 DOI: 10.1007/s11357-024-01190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/01/2024] [Indexed: 10/23/2024] Open
Abstract
Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) are often associated with depressive symptoms from the prodromal stage. The aim of the present study was to investigate the neuroanatomical correlates of depression in prodromal to mild DLB patients compared with AD patients. Eighty-three DLB patients, 37 AD patients, and 18 healthy volunteers were enrolled in this study. Depression was evaluated with the Mini International Neuropsychiatric Interview (MINI), French version 5.0.0. T1-weighted three-dimensional anatomical images were acquired for all participants. Regression and comparison analyses were conducted using a whole-brain voxel-based morphometry (VBM) approach on the grey matter volume (GMV). DLB patients presented a significantly higher mean MINI score than AD patients (p = 0.004), 30.1% of DLB patients had clinical depression, and 56.6% had a history of depression, while 0% of AD patients had clinical depression and 29.7% had a history of depression. VBM regression analyses revealed negative correlations between the MINI score and the GMV of right prefrontal regions in DLB patients (p < 0.001, uncorrected). Comparison analyses between DLB patients taking and those not taking an antidepressant mainly highlighted a decreased GMV in the bilateral middle/inferior temporal gyrus (p < 0.001, uncorrected) in treated DLB patients. In line with the literature, our behavioral analyses revealed higher depression scores in DLB patients than in AD patients. We also showed that depressive symptoms in DLB are associated with decreased GMV in right prefrontal regions. Treated DLB patients with long-standing depression would be more likely to experience GMV loss in the bilateral middle/inferior temporal cortex. These findings should be taken into account when managing DLB patients.
Collapse
Affiliation(s)
- Manon Querry
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France.
| | - Anne Botzung
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Neurology Department, Head and Neck Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Alix Ravier
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Benoît Schorr
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
| | - Léa Sanna
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R, Neuropsychology Unit, Neurology Department, Head and Neck Division, University Hospitals of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Geriatrics Division, University Hospitals of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Liu S, Fan D, He C, Liu X, Zhang H, Zhang H, Zhang Z, Xie C. Resting-state cerebral blood flow and functional connectivity abnormalities in depressed patients with childhood maltreatment: Potential biomarkers of vulnerability? Psychiatry Clin Neurosci 2024; 78:41-50. [PMID: 37781929 DOI: 10.1111/pcn.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
AIM Childhood maltreatment (CM) is an important risk factor for major depressive disorder (MDD). This study aimed to explore the specific effect of CM on cerebral blood flow (CBF) and brain functional connectivity (FC) in MDD patients. METHODS A total of 150 subjects were collected including 55 MDD patients with CM, 34 MDD patients without CM, 19 healthy controls (HC) with CM, and 42 HC without CM. All subjects completed MRI scans and neuropsychological tests. Two-way analysis of covariance was used to detect the main and interactive effects of disease and CM on CBF and FC across subjects. Then, partial correlation analyses were conducted to explore the behavioral significance of altered CBF and FC in MDD patients. Finally, a support vector classifier model was applied to differentiate MDD patients. RESULTS MDD patients represented increased CBF in bilateral temporal lobe and decreased CBF in right visual cortex. Importantly, significant depression-by-CM interactive effects on CBF were primarily located in the frontoparietal regions, including orbitofrontal cortex (OFC), lateral prefrontal cortex (PFC), and parietal cortex. Moreover, significant FC abnormalities were seen in OFC-PFC and frontoparietal-visual cortex. Notably, the abnormal CBF and FC were significantly associated with behavioral performance. Finally, a combination of altered CBF and FC behaved with a satisfactory classification ability to differentiate MDD patients. CONCLUSIONS These results highlight the importance of frontoparietal and visual cortices for MDD with CM experience, proposing a potential neuroimaging biomarker for MDD identification.
Collapse
Affiliation(s)
- Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haisan Zhang
- Psychology School of Xinxiang Medical University, Xinxiang, China
- Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Psychology School of Xinxiang Medical University, Xinxiang, China
- Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Luo Q, Chen J, Li Y, Lin X, Yu H, Lin X, Wu H, Peng H. Cortical thickness and curvature abnormalities in patients with major depressive disorder with childhood maltreatment: Neural markers of vulnerability? Asian J Psychiatr 2023; 80:103396. [PMID: 36508912 DOI: 10.1016/j.ajp.2022.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Childhood maltreatment has been related to various disadvantageous lifetime outcomes. However, the brain structural alterations that occur in major depressive disorder (MDD) patients with childhood maltreatment are incompletely investigated. METHODS We extensively explored the cortical abnormalities including cortical volume, surface area, thickness, sulcal depth, and curvature in maltreated MDD patients. Twoway ANOVA was performed to distinguish the effects of childhood maltreatment and depression on structural abnormalities. Partial correlation analysis was performed to explore the relationship between childhood maltreatment and cortical abnormalities. Moreover, we plotted the receiver operating characteristic curve to examine whether the observed cortical abnormalities could be used as neuro biomarkers to identify maltreated MDD patients. RESULTS We reach the following findings: (i) relative to MDD without childhood maltreatment, MDD patients with childhood maltreatment existed increased cortical curvature in inferior frontal gyrus; (ii) compared to HC without childhood maltreatment, decreased cortical thickness was observed in anterior cingulate cortex and medial prefrontal cortex in MDD patients with childhood maltreatment; (iii) we confirmed the inseparable relationship between cortical curvature alterations in inferior frontal gyrus as well as childhood maltreatment; (iv) cortical curvature abnormality in inferior frontal gyrus could be applied as neural biomarker for clinical identification of MDD patients with childhood maltreatment. CONCLUSIONS Childhood maltreatment have a significant effects on cortical thickness and curvature abnormalities involved in inferior frontal gyrus, anterior cingulate cortex and medial prefrontal cortex, constituting the vulnerability to depression.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xiaohui Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
5
|
Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci 2022; 16:893903. [PMID: 35958984 PMCID: PMC9359080 DOI: 10.3389/fnins.2022.893903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Decreased tolerance in response to specific every-day sounds (misophonia) is a serious, debilitating disorder that is gaining rapid recognition within the mental health community. Emerging research findings suggest that misophonia may have a unique neural signature. Specifically, when examining responses to misophonic trigger sounds, differences emerge at a physiological and neural level from potentially overlapping psychopathologies. While these findings are preliminary and in need of replication, they support the hypothesis that misophonia is a unique disorder. In this theoretical paper, we begin by reviewing the candidate networks that may be at play in this complex disorder (e.g., regulatory, sensory, and auditory). We then summarize current neuroimaging findings in misophonia and present areas of overlap and divergence from other mental health disorders that are hypothesized to co-occur with misophonia (e.g., obsessive compulsive disorder). Future studies needed to further our understanding of the neuroscience of misophonia will also be discussed. Next, we introduce the potential of neurostimulation as a tool to treat neural dysfunction in misophonia. We describe how neurostimulation research has led to novel interventions in psychiatric disorders, targeting regions that may also be relevant to misophonia. The paper is concluded by presenting several options for how neurostimulation interventions for misophonia could be crafted.
Collapse
Affiliation(s)
- Andrada D. Neacsiu
- Duke Center for Misophonia and Emotion Regulation, Duke Brain Stimulation Research Center, Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria Szymkiewicz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jeffrey T. Galla
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Brenden Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Yashaswini Kulkarni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Cade W. Spector
- Department of Philosophy, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Liu X, Gu L, Liu J, Hong S, Luo Q, Wu Y, Yang J, Jiang J. MRI Study of Cerebral Cortical Thickness in Patients with Herpes Zoster and Postherpetic Neuralgia. J Pain Res 2022; 15:623-632. [PMID: 35250306 PMCID: PMC8894103 DOI: 10.2147/jpr.s352105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To measure the changes in cerebral cortical thickness in patients with herpes zoster (HZ) and postherpetic neuralgia (PHN) by surface-based morphometry (SBM) and further estimate its correlation with clinical scores. Materials and Methods Twenty-nine HZ patients, 30 PHN patients and 30 well-matched healthy controls (HCs) were included. Magnetic resonance imaging (MRI) data from all subjects were collected and then analyzed by SBM. The changes in cortical thickness among the HZ, PHN and HC groups were analyzed by ANOVA and correlated with clinical scores. Results The thickness of the bilateral primary visual cortex (V1, V2) and right primary visual cortex (V3), left somatosensory cortex (L3A), right anterior cingulate gyrus and medial prefrontal cortex (RS32) increased in PHN group, and the thickness the left insular and frontal opercular cortex (LFOP4), left motor cortex (L3B), and right superior temporal visual cortex (RSTV) were decreased in the HZ and PHN groups compared to the HC group. The thickness measurements of RS32, LFOP4, and (L3B) in HZ and PHN patients were correlated with the duration of disease. In HZ and PHN patients, the Hamilton Anxiety Scale (HAMA) and Hamilton Depression Scale (HAMD) scores were significantly positively correlated. Conclusion Changes in cortical thickness in the areas related to sensory, motor, and cognitive/emotional changes in patients with PHN affect the neuroplasticity process of the brain, which may be the reason for the transformation of HZ into PHN and provide a possible explanation for the neuropathological mechanism of pain persistence in PHN patients.
Collapse
Affiliation(s)
- Xian Liu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiaqi Liu
- Department of Radiology, The Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Qing Luo
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Ying Wu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiaojiao Yang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Correspondence: Jian Jiang, Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People’s Republic of China, Tel +86 791 8869 3825, Email
| |
Collapse
|
7
|
Zhang Y, Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Kong Y, Gao S, Zhang Z, Yuan Y. Global topology alteration of the brain functional network affects the 8-week antidepressant response in major depressive disorder. J Affect Disord 2021; 294:491-496. [PMID: 34330044 DOI: 10.1016/j.jad.2021.07.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Previous studies have indicated that the global topology of the brain functional network in patients with major depressive disorder (MDD) differs from that of those with normal controls (NCs). However, the relationship between an altered global topology and the response to antidepressants remains unclear. Here, we investigated whether differences in global topology affect the efficacy of antidepressants in MDD patients. METHODS 108 MDD patients and 61 NCs were recruited. A magnetic resonance imaging (MRI) scan was performed at the baseline, and the Hamilton Depression Scale-24 (HAMD-24) was assessed at baseline and after 2 and 8 weeks of antidepressant treatment. Seven global topological parameters of the brain functional network were measured and compared between groups. A correlation analysis was performed to identify the relationships between global topological parameters and antidepressant efficacy. RESULTS The brain networks of MDD patients and NCs were both small-world networks. The clustering coefficient (Cp) and local efficiency (Eloc) were significantly smaller in MDD patients compared with those in NCs. The characteristic path length (Lp) were negatively correlated with the 8-week reductive rate of HAMD-24 in the MDD group. CONCLUSION The present research found that the brain functional network of MDD patients still had a small-world organization but with a lower Cp and Eloc than the NCs. In addition, the brain network global topology might have an impact on the antidepressant response and thus had the potential to become a treatment predictor of MDD.
Collapse
Affiliation(s)
- Yanran Zhang
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Haisan Zhang
- Department of Clinical Magnetic Resonance Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Youyong Kong
- Lab of Image Science and Technology, School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China
| | - Shuwen Gao
- Lab of Image Science and Technology, School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Wei X, Lv H, Chen Q, Wang Z, Liu C, Zhao P, Gong S, Yang Z, Wang Z. Cortical Thickness Alterations in Patients With Tinnitus Before and After Sound Therapy: A Surface-Based Morphometry Study. Front Neurosci 2021; 15:633364. [PMID: 33746699 PMCID: PMC7973008 DOI: 10.3389/fnins.2021.633364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 01/21/2023] Open
Abstract
This study aimed to explore brain surface-based morphometry cortical thickness changes in patients with idiopathic tinnitus before and after 24 weeks of sound therapy. In this prospective observational study, we recruited 33 tinnitus patients who had undergone 24 weeks of sound therapy and 26 matched healthy controls. For the two groups of subjects, a 3D-BRAVO pulse sequence was acquired both at baseline and at the 24th week. Structural image data preprocessing was performed using the DPABISurf toolbox. The Tinnitus Handicap Inventory (THI) score was assessed to determine the severity of tinnitus before and after treatment. Two-way mixed-model analysis of variance (ANOVA) and Pearson’s correlation analysis were used in the statistical analysis. Student–Newman–Keuls (SNK) tests were used in the post hoc analysis. Significantly lower cortical thickness was found in the left somatosensory and motor cortex (SMC), left posterior cingulate cortex (PCC), and right orbital and polar frontal cortex (OPFC) of the participants in the tinnitus group at baseline than in the participants in the HC group at baseline and after 24 weeks; in the tinnitus group, significantly higher cortical thickness was found after the 24 weeks sound therapy in comparison to the baseline in the left SMC, bilateral superior parietal cortex (SPC), left inferior parietal cortex (IPC), left PCC, and right OPFC. In the HC group, no statistically significant difference in cortical thickness was found after the 24 weeks treatment in comparison to the baseline in the bilateral SMC, bilateral SPC, left IPC, left PCC, or right OPFC. The changes in cortical thickness before and after sound therapy can provide certain reference values for clinical tinnitus treatment. These brain regions could serve as potential targets for neuroimaging.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaodi Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunli Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|