1
|
Withey SL, Deshpande HU, Cao L, Bergman J, Kohut SJ. Effects of chronic naltrexone treatment on relapse-related behavior and neural responses to fentanyl in awake nonhuman primates. Psychopharmacology (Berl) 2024; 241:2289-2302. [PMID: 39122918 DOI: 10.1007/s00213-024-06633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/03/2024] [Indexed: 08/12/2024]
Abstract
Naltrexone, an opioid antagonist that blocks the reinforcing properties of opioid agonists, is often prescribed to preclude relapse to opioid use disorder (OUD) following detoxification. However, few laboratory studies have directly investigated the ability of naltrexone to alter relapse-inducing effects of opioid agonists, including their priming strength in reinstatement studies and their impact in brain regions known to be involved in drug-induced reinforcement in MRI studies. Here we directly address this issue by investigating the effects of continuous exposure to naltrexone on 1) fentanyl-induced reinstatement of drug-seeking behavior, 2) fentanyl-induced patterns of blood oxygenation level dependent (BOLD) activation in the nucleus accumbens (NAcc), and 3) fentanyl-induced changes in NAcc functional connectivity (FC) in awake non-human primates that are engaged in ongoing opioid self-administration studies. We found that naltrexone antagonizes the priming strength of fentanyl as shown by a rightward shift in its reinstatement dose-effect curve and that naltrexone surmountably antagonizes the BOLD response induced by fentanyl. However, while naltrexone also countered fentanyl's effects on NAcc FC, the effects were not surmounted by a higher dose of fentanyl. Together, these data suggest that, in contrast to naltrexone's modulation of fentanyl's effects on behavior and BOLD responses, their interactive effects on FC between multiple brain regions do not reflect their receptor-mediated activity. Additionally, we demonstrated opposing effects in the absence and presence of naltrexone on NAcc FC at baseline (i.e., in the absence of any fentanyl prime) suggesting that naltrexone alters FC at baseline, even though naltrexone appears behaviorally silent in the absence of an agonist prime. Together these data provide additional insight into ways in which naltrexone interacts with opioid agonists, both behaviorally and in the brain. Further understanding the effects of opioid agonists on patterns of FC could help elucidate our understanding of the neural processes that contribute to the initiation of and relapse to opioid-seeking behavior in OUD.
Collapse
Affiliation(s)
- Sarah L Withey
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Harshawardhan U Deshpande
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA, USA
| | - Lei Cao
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA, USA
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen J Kohut
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA, USA.
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
2
|
Ma J, Zou L, Lou Y, Lin Y, Zhou J, Ju N, Pan J, Zhang X, Qi D. 20- Deoxyingenol attenuate morphine-induced hippocampus neurotoxicity and memory impairments in rats. Heliyon 2024; 10:e31605. [PMID: 38882370 PMCID: PMC11180326 DOI: 10.1016/j.heliyon.2024.e31605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Objective The present study aimed to see if 20-Deoxyingenol(20-DOI) could protect hippocampus neurons from the neurotoxic effects of morphine and reduce memory loss in rats. Method Male Wistar rats were given morphine hydrochloride (45 mg/kg, sc, four weeks) and 20-DOI (10, 20 mg/kg, ip., coadministered with morphine) for the Morris Water Maze (MWM) test to investigate the effects of 20-DOI on spatial learning and memory. Western blotting was used to evaluate the expression of the hippocampal CA1 region of the cleaved caspase-3, Bax, and Bcl2 proteins and so on. Moreover, these assays were used to evaluate the expression of superoxide dismutase (SOD)2, heme oxygenase 1(HO1) protein, and glutathione peroxidase (GPx) activity within the hippocampus CA1 area. Results The administration of 20-DOI (10 and 20 mg/kg) to morphine-treated mice enhanced spatial learning and reduced memory deficits. Additionally, 20-DOI treatment reduced apoptosis and oxidative stress in the hippocampal CA1 region of morphine-treated rats. Moreover, 20-DOI improved the autophagy level of the hippocampal CA1 area of morphine-treated rats using Transcription factor EB (TFEB), and 20-DOI prevented spatial learning and memory impairment in morphine-treated rats. The current observation could be partially due to the inhibition of neuronal apoptosis and oxidative stress in the hippocampal CA1 region of rats treated with morphine and the improved autophagy in this region. Conclusions 20-DOI attenuated morphine administration in rats with chronic disease caused spatial learning and memory dysfunction. These mechanistic effects could be partially related to 20-DOI protecting the CA1 region of rat hippocampal neurons from the morphine-induced oxidative stress, apoptosis, and autophagy through TFEB.
Collapse
Affiliation(s)
- Jianfeng Ma
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yani Lou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiansong Zhou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Nanbin Ju
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xutong Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Dansi Qi
- Department of Pathology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Withey SL, Pizzagalli DA, Bergman J. Translational In Vivo Assays in Behavioral Biology. Annu Rev Pharmacol Toxicol 2024; 64:435-453. [PMID: 37708432 DOI: 10.1146/annurev-pharmtox-051921-093711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The failure of preclinical research to advance successful candidate medications in psychiatry has created a paradigmatic crisis in psychiatry. The Research Domain Criteria (RDoC) initiative was designed to remedy this situation with a neuroscience-based approach that employs multimodal and cross-species in vivo methodology to increase the probability of translational findings and, consequently, drug discovery. The present review underscores the feasibility of this methodological approach by briefly reviewing, first, the use of multidimensional and cross-species methodologies in traditional behavioral pharmacology and, subsequently, the utility of this approach in contemporary neuroimaging and electrophysiology research-with a focus on the value of functionally homologous studies in nonhuman and human subjects. The final section provides a brief review of the RDoC, with a focus on the potential strengths and weaknesses of its domain-based underpinnings. Optimistically, this mechanistic and multidimensional approach in neuropsychiatric research will lead to novel therapeutics for the management of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts, USA;
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Jack Bergman
- Preclinical Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts, USA;
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Kamens HM, Cramer S, Hanley RN, Chase S, Wickenheisser A, Horton WJ, Zhang N. Neuroimaging of opioid exposure: a review of preclinical animal models to inform addiction research. Psychopharmacology (Berl) 2023; 240:2459-2482. [PMID: 37857897 DOI: 10.1007/s00213-023-06477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Opioid use results in thousands of overdose deaths each year. To address this crisis, we need a better understanding of the neurobiological mechanisms that drive opioid abuse. The noninvasive imaging tools positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and manganese-enhanced magnetic resonance imaging (MEMRI) can be used to identify how brain activity responds to acute opioid exposure and adapts to chronic drug treatment. These techniques can be performed in humans and animal models, and brain networks identified in animals closely map to the human brain. Animal models have the advantage of being able to systematically examine the independent effects of opioid exposure in a controlled environment accounting for the complex factors that drive opioid misuse in humans. This review synthesizes literature that utilized noninvasive neuroimaging tools (PET, fMRI, and MEMRI) measuring brain activity correlates in animals to understand the neurobiological consequences of exposure to abused opioids. A PubMed search in September 2023 identified 25 publications. These manuscripts were divided into 4 categories based on the route and duration of drug exposure (acute/chronic, active/passive administration). Within each category, the results were generally consistent across drug and imaging protocols. These papers cover a 20-year range and highlight the advancements in neuroimaging methodology during that time. These advances have enabled researchers to achieve greater resolution of brain regions altered by opioid exposure and to identify patterns of brain activation across regions (i.e., functional connectivity) and within subregions of structures. After describing the existing literature, we suggest areas where additional research is needed.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Samuel Cramer
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel N Hanley
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Spencer Chase
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anna Wickenheisser
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Hazani HM, Naina Mohamed I, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Pakri Mohamed RM, Mohamad Isa MF, Abdulrahman SM, Ramadah R, Kamaluddin MR, Kumar J. Goofballing of Opioid and Methamphetamine: The Science Behind the Deadly Cocktail. Front Pharmacol 2022; 13:859563. [PMID: 35462918 PMCID: PMC9021401 DOI: 10.3389/fphar.2022.859563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Globally, millions of people suffer from various substance use disorders (SUD), including mono-and polydrug use of opioids and methamphetamine. Brain regions such as the cingulate cortex, infralimbic cortex, dorsal striatum, nucleus accumbens, basolateral and central amygdala have been shown to play important roles in addiction-related behavioral changes. Clinical and pre-clinical studies have characterized these brain regions and their corresponding neurochemical changes in numerous phases of drug dependence such as acute drug use, intoxication, craving, withdrawal, and relapse. At present, many studies have reported the individual effects of opioids and methamphetamine. However, little is known about their combined effects. Co-use of these drugs produces effects greater than either drug alone, where one decreases the side effects of the other, and the combination produces a prolonged intoxication period or a more desirable intoxication effect. An increasing number of studies have associated polydrug abuse with poorer treatment outcomes, drug-related deaths, and more severe psychopathologies. To date, the pharmacological treatment efficacy for polydrug abuse is vague, and still at the experimental stage. This present review discusses the human and animal behavioral, neuroanatomical, and neurochemical changes underlying both morphine and methamphetamine dependence separately, as well as its combination. This narrative review also delineates the recent advances in the pharmacotherapy of mono- and poly drug-use of opioids and methamphetamine at clinical and preclinical stages.
Collapse
Affiliation(s)
- Hanis Mohammad Hazani
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | | | | | | | - Ravi Ramadah
- National Anti-Drugs Agency Malaysia, Selangor, Malaysia
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| |
Collapse
|