1
|
Jin K, Shen S, Shi R, Xu X, Hu M. Exosomal miRNAs in prenatal diagnosis: Recent advances. Medicine (Baltimore) 2024; 103:e38717. [PMID: 38996168 PMCID: PMC11245187 DOI: 10.1097/md.0000000000038717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
Exosomes, small membranous microvesicles released by cells, contain a range of bioactive molecules, including proteins and miRNAs, which play critical roles in intercellular communication and physiological and pathological processes. Current research suggests that exosomal miRNAs could serve as valuable biomarkers for prenatal diseases, offering a noninvasive method for early detection and monitoring. Studies linking exosomal miRNAs to various birth defects, including fetal growth restriction, urinary tract malformations, cardiovascular system malformations, and hereditary diseases like Down syndrome, were discussed. However, there are some conflicting study findings due to different exosome separation methods. Here, we also discussed exosome separation methods, emphasizing the importance of method selection based on specific purposes and sample types. Further studies are needed to standardize isolation techniques, understand the specific mechanisms underlying exosomal miRNA function, and develop reliable noninvasive prenatal diagnostic indicators. Overall, exosomal miRNAs show promise as potential biomarkers for prenatal diagnosis, but further research is necessary to validate their clinical utility.
Collapse
Affiliation(s)
- Keqin Jin
- Genetic Laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Shuangshuang Shen
- Prenatal Diagnostic Center, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Ruyong Shi
- Department of Ultrasound Medicine, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Xiayuan Xu
- Genetic Laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Min Hu
- Gynaecology and Obstetrics, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| |
Collapse
|
2
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
3
|
Odogwu NM, Hagen C, Nelson TJ. Transcriptome studies of congenital heart diseases: identifying current gaps and therapeutic frontiers. Front Genet 2023; 14:1278747. [PMID: 38152655 PMCID: PMC10751320 DOI: 10.3389/fgene.2023.1278747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
Congenital heart disease (CHD) are genetically complex and comprise a wide range of structural defects that often predispose to - early heart failure, a common cause of neonatal morbidity and mortality. Transcriptome studies of CHD in human pediatric patients indicated a broad spectrum of diverse molecular signatures across various types of CHD. In order to advance research on congenital heart diseases (CHDs), we conducted a detailed review of transcriptome studies on this topic. Our analysis identified gaps in the literature, with a particular focus on the cardiac transcriptome signatures found in various biological specimens across different types of CHDs. In addition to translational studies involving human subjects, we also examined transcriptomic analyses of CHDs in a range of model systems, including iPSCs and animal models. We concluded that RNA-seq technology has revolutionized medical research and many of the discoveries from CHD transcriptome studies draw attention to biological pathways that concurrently open the door to a better understanding of cardiac development and related therapeutic avenue. While some crucial impediments to perfectly studying CHDs in this context remain obtaining pediatric cardiac tissue samples, phenotypic variation, and the lack of anatomical/spatial context with model systems. Combining model systems, RNA-seq technology, and integrating algorithms for analyzing transcriptomic data at both single-cell and high throughput spatial resolution is expected to continue uncovering unique biological pathways that are perturbed in CHDs, thus facilitating the development of novel therapy for congenital heart disease.
Collapse
Affiliation(s)
- Nkechi Martina Odogwu
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Clinton Hagen
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Timothy J. Nelson
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Wang H, Lin X, Wang X, Liu X, He S, Lyu G. Maternal body fluid lncRNAs serve as biomarkers to diagnose ventricular septal defect: from amniotic fluid to plasma. Front Genet 2023; 14:1254829. [PMID: 37745849 PMCID: PMC10516564 DOI: 10.3389/fgene.2023.1254829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Maternal body fluids contain abundant cell-free fetal RNAs which have the potential to serve as indicators of fetal development and pathophysiological conditions. In this context, this study aimed to explore the potential diagnostic value of maternal circulating long non-coding RNAs (lncRNAs) in ventricular septal defect (VSD). Methods: The potential of lncRNAs as non-invasive prenatal biomarkers for VSD was evaluated using quantitative polymerase chain reaction (qPCR) and receiver operating characteristic (ROC) curve analysis. The biological processes and regulatory network of these lncRNAs were elucidated through bioinformatics analysis. Results: Three lncRNAs (LINC00598, LINC01551, and GATA3-AS1) were found to be consistent in both maternal plasma and amniotic fluid. These lncRNAs exhibited strong diagnostic performance for VSD, with AUC values of 0.852, 0.957, and 0.864, respectively. The bioinformatics analysis revealed the involvement of these lncRNAs in heart morphogenesis, actin cytoskeleton organization, cell cycle regulation, and protein binding through a competitive endogenous RNA (ceRNA) network at the post-transcriptional level. Conclusion: The cell-free lncRNAs present in the amniotic fluid have the potential to be released into the maternal circulation, making them promising candidates for investigating epigenetic regulation in VSD.
Collapse
Affiliation(s)
- Huaming Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xi Lin
- Department of Diagnostic Radiology, Fujian Cancer Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinda Wang
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xinxiu Liu
- Department of Medical Ultrasound, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Shaozheng He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
5
|
Liu Z, Jiang Y, Fang F, Li R, Han J, Yang X, Deng Q, Li LS, Lei TY, Li DZ, Liao C. ASXL3 gene mutations inhibit cell proliferation and promote cell apoptosis in mouse cardiomyocytes by upregulating lncRNA NONMMUT063967.2. Biochem Biophys Rep 2023; 35:101505. [PMID: 37435360 PMCID: PMC10331400 DOI: 10.1016/j.bbrep.2023.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Congenital heart disease (CHD) is a serious condition with unknown etiology. In a recent study, a compound heterozygous mutation (c.3526C > T [p.Arg1176Trp] and c.4643A > G [p.Asp1548Gly]) in the ASXL3 gene was identified, which is associated with CHD. This mutation was overexpressed in HL-1 mouse cardiomyocyte cells, leading to increased cell apoptosis and decreased cell proliferation. However, whether this effect is mediated by long noncoding RNAs (lncRNAs) is yet to be determined. We identified the differences among lncRNA and mRNA profiles in mouse heart tissues using sequencing to explore this issue. We detected HL-1 cell proliferation and apoptosis through CCK8 and flow cytometry. Fgfr2, lncRNA, and Ras/ERK signaling pathway expressions were evaluated using quantitative real time polymerase chain reaction (qRT-PCR) and western blot (WB) assays. We also conducted functional investigations by silencing lncRNA NONMMUT063967.2. The sequencing revealed significant changes in lncRNA and mRNA profiles, with the expression of lncRNA NONMMUT063967.2 being significantly promoted in the ASXL3 gene mutations group (MT) while the expression of Fgfr2 being downregulated. The in vitro experiments showed that ASXL3 gene mutations inhibited the proliferation of cardiomyocytes and accelerated cell apoptosis by promoting the expression of lncRNAs (NONMMUT063967.2, NONMMUT063918.2, and NONMMUT063891.2), suppressing the formation of FGFR2 transcripts, and inhibiting the Ras/ERK signaling pathway. The decrease in FGFR2 had the same effect on the Ras/ERK signaling pathway, proliferation, and apoptosis in mouse cardiomyocytes as ASXL3 mutations. Further mechanistic studies revealed that suppression of lncRNA NONMMUT063967.2 and overexpression of FGFR2 reversed the effects of the ASXL3 mutations on the Ras/ERK signaling pathway, proliferation, and apoptosis in mouse cardiomyocytes. Therefore, ASXL3 mutation decreases FGFR2 expression by upregulating lncRNA NONMMUT063967.2, inhibiting cell proliferation and promoting cell apoptosis in mouse cardiomyocytes.
Collapse
Affiliation(s)
- Zequn Liu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yanmin Jiang
- Institute of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Fu Fang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Lu-Shan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ting-ying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| |
Collapse
|
6
|
Zhang L, Yang Y, Zhang L, Ma J, Sun R, Tian Y, Yuan X, Liu B, Yu T, Jiang Z. Identification of long non-coding RNA in formaldehyde-induced cardiac dysplasia in rats. Food Chem Toxicol 2023; 174:113653. [PMID: 36758786 DOI: 10.1016/j.fct.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, 276000, PR China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, PR China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China.
| |
Collapse
|
7
|
Emami Meybodi SM, Soleimani N, Yari A, Javadifar A, Tollabi M, Karimi B, Emami Meybodi M, Seyedhossaini S, Brouki Milan P, Dehghani Firoozabadi A. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: Implications for cardiovascular diseases complications. Int J Biol Macromol 2023; 225:1049-1071. [PMID: 36414082 DOI: 10.1016/j.ijbiomac.2022.11.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders with major global health consequences. The prevalence of CVDs continues to grow due to population-aging and lifestyle modifications. Non-coding RNAs (ncRNAs) as key regulators of cell signaling pathways have gained attention in the occurrence and development of CVDs. Exosomal-lncRNAs (exos-lncRNAs) are emerging biomarkers due to their high sensitivity and specificity, stability, accuracy and accessibility in the biological fluids. Recently, circulatory and exos-based-lncRNAs are emerging and novel bio-tools in various pathogenic conditions. It is worth mentioning that dysregulation of these molecules has been found in different types of CVDs. In this regard, we aimed to discuss the knowledge gaps and suggest research priorities regarding circulatory and exos-lncRNAs as novel bio-tools and therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nafiseh Soleimani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Mciences, Birjand, Iran.
| | - Amin Javadifar
- Immunology Research Center, Inflammation and Inflammatory Disease Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Tollabi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahmoud Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyedmostafa Seyedhossaini
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Dehghani Firoozabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Liu X, Bai X, Liu H, Hong Y, Cui H, Wang L, Xu W, Zhao L, Li X, Li H, Li X, Chen H, Meng Z, Lou H, Xu H, Lin Y, Du Z, Kopylov P, Yang B, Zhang Y. LncRNA LOC105378097 inhibits cardiac mitophagy in natural ageing mice. Clin Transl Med 2022; 12:e908. [PMID: 35758595 PMCID: PMC9235350 DOI: 10.1002/ctm2.908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The development of heart ageing is the main cause of chronic disability, disease and death in the elderly. Ample evidence has established a pivotal role for significantly reduced mitophagy in the ageing heart. However, the underlying mechanisms of mitophagy deficiency in ageing heart are little known. The present study aimed to explore the underlying mechanisms of lncRNA LOC105378097 (Senescence-Mitophagy Associated LncRNA, lncR-SMAL) actions on mitophagy in the setting of heart ageing. METHODS The expression of lncR-SMAL was measured in serum from different ages of human and heart from different ages of mice through a quantitative real-time polymerase chain reaction. The effects of lncR-SMAL on heart function of mice were assessed by echocardiography and pressure-volume measurements system. Cardiac senescence was evaluated by hematoxylin-eosin staining, senescence-associated β-galactosidase staining, flow cytometry and western blot analysis of expression of ageing related markes p53 and p21. Cardiomyocyte mitophagy was assessed by western blot, mRFP-GFP-LC3 adenovirus particles transfection and mito-Keima staining. Interaction between lncR-SMAL and Parkin was validated through molecular docking, RNA immunoprecipitation (RIP) and RNA pull-down assay. Ubiquitination assay was performed to explore the molecular mechanism of Parkin inhibition. The effects of lncR-SMAL on mitochondrial function were investigated through electron microscopic examination, JC-1 staining and oxygen consumption rates analysis. RESULTS The heart-enriched lncR-SMAL reached the expression crest in the serum of human at an age of 60. Exogenously overexpression of lncRNA SMAL deteriorated cardiac function exactly as natural ageing and inhibited the associated cardiomyocytes mitophagy by depressing Parkin protein level. Improved heart ageing and mitophagy caused by Parkin overexpression were reversed by lncR-SMAL in mice. In contrast, the loss of lncR-SMAL in AC16 cells induced the upregulation of Parkin protein and ameliorated mitophagy and mitochondrial dysfunction, resulting in alleviated cardiac senescence. Besides, we found the interaction between lncR-SMAL and Parkin protein through computational docking analysis, pull-down and RIP assay. This would contribute to the promotive effect of lncR-SMAL on Parkin ubiquitination and decrease Parkin protein stability. CONCLUSIONS The present study for the first time demonstrates a heart-enriched lncRNA, SMAL, that inhibits the mitophagy of cardiomyocytes via the downregulation of Parkin protein, which further contributes to heart ageing and cardiac dysfunction in natural ageing mice.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical SciencesHarbinChina
| | - Xue Bai
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Heng Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yang Hong
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Hao Cui
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Lei Wang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Wanqing Xu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Limin Zhao
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xiaohan Li
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Huimin Li
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xia Li
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Hui Chen
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Ziyu Meng
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Han Lou
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Henghui Xu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yuan Lin
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Zhimin Du
- Institute of Clinical PharmacyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Philipp Kopylov
- Department of Preventive and Emergency CardiologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Baofeng Yang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of MedicineDentistry and Health Sciences University of MelbourneMelbourneAustralia
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical SciencesHarbinChina
| | - Yong Zhang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical SciencesHarbinChina
- Institute of Metabolic DiseaseHeilongjiang Academy of Medical ScienceHarbinChina
| |
Collapse
|
9
|
Chen S, Jia Z, Cai M, Ye M, Wu D, Wan T, Zhang B, Wu P, Xu Y, Guo Y, Tian C, Ma D, Ma J. SP1-Mediated Upregulation of Long Noncoding RNA ZFAS1 Involved in Non-syndromic Cleft Lip and Palate via Inactivating WNT/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:662780. [PMID: 34268302 PMCID: PMC8275830 DOI: 10.3389/fcell.2021.662780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Non-syndromic cleft lip and palate (NSCLP) is one of the most common congenital malformations with multifactorial etiology. Although long non-coding RNAs (lncRNAs) have been implicated in the development of lip and palate, their roles in NSCLP are not fully elucidated. This study aimed to investigate how dysregulated lncRNAs contribute to NSCLP. Using lncRNA sequencing, bioinformatics analysis, and clinical tissue sample detection, we identified that lncRNA ZFAS1 was significantly upregulated in NSCLP. The upregulation of ZFAS1 mediated by SP1 transcription factor (SP1) inhibited expression levels of Wnt family member 4 (WNT4) through the binding with CCCTC-binding factor (CTCF), subsequently inactivating the WNT/β-catenin signaling pathway, which has been reported to play a significant role on the development of lip and palate. Moreover, in vitro, the overexpression of ZFAS1 inhibited cell proliferation and migration in human oral keratinocytes and human umbilical cord mesenchymal stem cells (HUC-MSCs) and also repressed chondrogenic differentiation of HUC-MSCs. In vivo, ZFAS1 suppressed cell proliferation and numbers of chondrocyte in the zebrafish ethmoid plate. In summary, these results indicated that ZFAS1 may be involved in NSCLP by affecting cell proliferation, migration, and chondrogenic differentiation through inactivating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shiyu Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming Cai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mujie Ye
- Children's Hospital of Fudan University, Shanghai, China
| | - Dandan Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peixuan Wu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuexin Xu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuntao Guo
- Medical Laboratory of Nantong ZhongKe, Nantong, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Peking University, Beijing, China
| | - Duan Ma
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|