1
|
Miller SM, Stuart KC, Burke NW, Rollins LA, Bonduriansky R. Genetic and Phenotypic Consequences of Local Transitions between Sexual and Parthenogenetic Reproduction in the Wild. Am Nat 2024; 203:73-91. [PMID: 38207137 DOI: 10.1086/727511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractTransitions from sexual to asexual reproduction have occurred in numerous lineages, but it remains unclear why asexual populations rarely persist. In facultatively parthenogenetic animals, all-female populations can arise when males are absent or become extinct, and such populations could help to understand the genetic and phenotypic changes that occur in the initial stages of transitions to asexuality. We investigated a naturally occurring spatial mosaic of mixed-sex and all-female populations of the facultatively parthenogenetic Australian phasmid Megacrania batesii. Analysis of single-nucleotide polymorphisms indicated multiple independent transitions between reproductive modes. All-female populations had much lower heterozygosity and allelic diversity than mixed-sex populations, but we found few consistent differences in fitness-related traits between population types. All-female populations exhibited more frequent and severe deformities in their (flight-incapable) wings but did not show higher rates of appendage loss. All-female populations also harbored more ectoparasites in swamp (but not beach) habitats. Reproductive mode explained little variation in female body size, fecundity, or egg hatch rate. Our results suggest that transitions to parthenogenetic reproduction can lead to dramatic genetic changes with little immediate effect on performance. All-female M. batesii populations appear to consist of high-fitness genotypes that might be able to thrive for many generations in relatively constant and benign environments but could be vulnerable to environmental challenges, such as increased parasite abundance.
Collapse
|
2
|
Wiens JJ. Trait-based species richness: ecology and macroevolution. Biol Rev Camb Philos Soc 2023; 98:1365-1387. [PMID: 37015839 DOI: 10.1111/brv.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
3
|
Stec D, Cancellario T, Fontaneto D. Diversification rates in Tardigrada indicate a decreasing tempo of lineage splitting regardless of reproductive mode. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractUnderstanding the dynamics of speciation and extinction events is one of the most interesting subjects in evolutionary biology that relates to all life forms, even the smallest ones. Tardigrades are microscopic invertebrates that attracted public and scientific attention mostly due to their ability to enter into the diapause stage called cryptobiosis and in such stage resist extremely harsh environmental conditions. However, although recent research solved a considerable number of phylogenetic uncertainties and further uncovered physiological mechanisms of cryptobiosis, not much attention is given to the evolutionary forces shaping tardigrade diversity. Here, we investigated the effect of reproductive mode on diversification rates in tardigrades using three groups: macrobiotids, echiniscids and milnesids, which represent low, moderate and high levels of parthenogenesis, respectively. Our results showed a decreasing tempo of diversification events for each of the studied groups without any differences that could be ascribed to reproductive mode. We discussed the observed lack of effect in tardigrades acknowledging deficiencies in available data sets and encouraging further studies to understand whether our results can be considered reliable.
Collapse
|
4
|
Jaron KS, Parker DJ, Anselmetti Y, Tran Van P, Bast J, Dumas Z, Figuet E, François CM, Hayward K, Rossier V, Simion P, Robinson-Rechavi M, Galtier N, Schwander T. Convergent consequences of parthenogenesis on stick insect genomes. SCIENCE ADVANCES 2022; 8:eabg3842. [PMID: 35196080 PMCID: PMC8865771 DOI: 10.1126/sciadv.abg3842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex affects genome evolution remains poorly understood. We generated reference genomes for five independently evolved parthenogenetic species in the stick insect genus Timema and their closest sexual relatives. Using these references and population genomic data, we show that parthenogenesis results in an extreme reduction of heterozygosity and often leads to genetically uniform populations. We also find evidence for less effective positive selection in parthenogenetic species, suggesting that sex is ubiquitous in natural populations because it facilitates fast rates of adaptation. Parthenogenetic species did not show increased transposable element (TE) accumulation, likely because there is little TE activity in the genus. By using replicated sexual-parthenogenetic comparisons, our study reveals how the absence of sex affects genome evolution in natural populations, providing empirical support for the negative consequences of parthenogenesis as predicted by theory.
Collapse
Affiliation(s)
- Kamil S. Jaron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Corresponding author. (D.J.P.); (K.S.J.); (T.S.)
| | - Darren J. Parker
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Corresponding author. (D.J.P.); (K.S.J.); (T.S.)
| | | | - Patrick Tran Van
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emeric Figuet
- ISEM—Institut des Sciences de l’Evolution, Montpellier, France
| | | | - Keith Hayward
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Victor Rossier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Simion
- ISEM—Institut des Sciences de l’Evolution, Montpellier, France
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Galtier
- ISEM—Institut des Sciences de l’Evolution, Montpellier, France
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Corresponding author. (D.J.P.); (K.S.J.); (T.S.)
| |
Collapse
|
5
|
Chen L, Wiens JJ. Multicellularity and sex helped shape the Tree of Life. Proc Biol Sci 2021; 288:20211265. [PMID: 34315265 PMCID: PMC8316805 DOI: 10.1098/rspb.2021.1265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Across the Tree of Life, there are dramatic differences in species numbers among groups. However, the factors that explain the differences among the deepest branches have remained unknown. We tested whether multicellularity and sexual reproduction might explain these patterns, since the most species-rich groups share these traits. We found that groups with multicellularity and sexual reproduction have accelerated rates of species proliferation (diversification), and that multicellularity has a stronger effect than sexual reproduction. Patterns of species richness among clades are then strongly related to these differences in diversification rates. Taken together, these results help explain patterns of biodiversity among groups of organisms at the very broadest scales. They may also help explain the mysterious preponderance of sexual reproduction among species (the 'paradox of sex') by showing that organisms with sexual reproduction proliferate more rapidly.
Collapse
Affiliation(s)
- Lian Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
6
|
Kočí J, Röslein J, Pačes J, Kotusz J, Halačka K, Koščo J, Fedorčák J, Iakovenko N, Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol Ecol 2020; 29:3038-3055. [PMID: 32627290 PMCID: PMC7540418 DOI: 10.1111/mec.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.
Collapse
Affiliation(s)
- Jan Kočí
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Röslein
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Pačes
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia.,Institute of Molecular Genetics, Czech Academy of Science, Prague, Czechia
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czechia
| | - Ján Koščo
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Jakub Fedorčák
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Nataliia Iakovenko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Karel Janko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| |
Collapse
|
7
|
Spoelhof JP, Keeffe R, McDaniel SF. Does reproductive assurance explain the incidence of polyploidy in plants and animals? THE NEW PHYTOLOGIST 2020; 227:14-21. [PMID: 31883115 DOI: 10.1111/nph.16396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Jonathan P Spoelhof
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Rachel Keeffe
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Kaczmarek Ł, Roszkowska M, Fontaneto D, Jezierska M, Pietrzak B, Wieczorek R, Poprawa I, Kosicki JZ, Karachitos A, Kmita H. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J Zool (1987) 2019. [DOI: 10.1111/jzo.12677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - M. Roszkowska
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - D. Fontaneto
- National Research Council Water Research Institute (CNR‐IRSA) Verbania Italy
| | - M. Jezierska
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - B. Pietrzak
- Department of Hydrobiology Faculty of Biology Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | - R. Wieczorek
- Faculty of Chemistry University of Warsaw Warsaw Poland
| | - I. Poprawa
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - J. Z. Kosicki
- Department of Avian Biology and Ecology Faculty of Biology Adam Mickiewicz University Poznan Poznań Poland
| | - A. Karachitos
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - H. Kmita
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| |
Collapse
|
9
|
Kordbacheh A, Wallace RL, Walsh EJ. Evidence supporting cryptic species within two sessile microinvertebrates, Limnias melicerta and L. ceratophylli (Rotifera, Gnesiotrocha). PLoS One 2018; 13:e0205203. [PMID: 30379825 PMCID: PMC6209156 DOI: 10.1371/journal.pone.0205203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/25/2022] Open
Abstract
Microorganisms, including rotifers, are thought to be capable of long distance dispersal. Therefore, they should show little population genetic structure due to high gene flow. Nevertheless, substantial genetic structure has been reported among populations of many taxa. In rotifers, genetic studies have focused on planktonic taxa leaving sessile groups largely unexplored. Here, we used COI gene and ITS region sequences to study genetic structure and delimit cryptic species in two sessile species (Limnias melicerta [32 populations]; L. ceratophylli [21 populations]). Among populations, ITS region sequences were less variable as compared to those of the COI gene (ITS; L. melicerta: 0-3.1% and L. ceratophylli: 0-4.4%; COI; L. melicerta: 0-22.7% and L. ceratophylli: 0-21.7%). Moreover, L. melicerta and L. ceratophylli were not resolved in phylogenetic analyses based on ITS sequences. Thus, we used COI sequences for species delimitation. Bayesian Species Delimitation detected nine putative cryptic species within L. melicerta and four putative cryptic species for L. ceratophylli. The genetic distance in the COI gene was 0-15.4% within cryptic species of L. melicerta and 0.5-0.6% within cryptic species of L. ceratophylli. Among cryptic species, COI genetic distance ranged 8.1-21.9% for L. melicerta and 15.1-21.2% for L. ceratophylli. The correlation between geographic and genetic distance was weak or lacking; thus geographic isolation cannot be considered a strong driver of genetic variation. In addition, geometric morphometric analyses of trophi did not show significant variation among cryptic species. In this study we used a conservative approach for species delimitation, yet we were able to show that species diversity in these sessile rotifers is underestimated.
Collapse
Affiliation(s)
- Azar Kordbacheh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Robert L. Wallace
- Department of Biology, Ripon College, Ripon, Wisconsin, United States of America
| | - Elizabeth J. Walsh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
10
|
Lorén JG, Farfán M, Fusté MC. Species Delimitation, Phylogenetic Relationships, and Temporal Divergence Model in the Genus Aeromonas. Front Microbiol 2018; 9:770. [PMID: 29731747 PMCID: PMC5920023 DOI: 10.3389/fmicb.2018.00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/05/2018] [Indexed: 11/16/2022] Open
Abstract
The definition of species boundaries constitutes an important challenge in biodiversity studies. In this work we applied the Generalized Mixed Yule Coalescent (GMYC) method, which determines a divergence threshold to delimit species in a phylogenetic tree. Based on the tree branching pattern, the analysis fixes the transition threshold between speciation and the coalescent process associated with the intra-species diversification. This approach has been widely used to delineate eukaryote species and establish their diversification process from sequence data. Nevertheless, there are few examples in which this analysis has been applied to a bacterial population. Although the GMYC method was originally designed to assume a constant (Yule) model of diversification at between-species level, it was later evaluated simulating other conditions. Our aim was therefore to determine the species delineation in Aeromonas using the GMYC method and asses which model best explains the speciation process in this bacterial genus. The application of the GMYC method allowed us to clearly delineate the Aeromonas species boundaries, even in the controversial groups, such as the A. veronii or A. media species complexes.
Collapse
Affiliation(s)
- J G Lorén
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Maribel Farfán
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - M C Fusté
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Scholl JP, Wiens JJ. Diversification rates and species richness across the Tree of Life. Proc Biol Sci 2017; 283:rspb.2016.1334. [PMID: 27605507 DOI: 10.1098/rspb.2016.1334] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/12/2016] [Indexed: 11/12/2022] Open
Abstract
Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies.
Collapse
Affiliation(s)
- Joshua P Scholl
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
12
|
Jablonski D. Approaches to Macroevolution: 2. Sorting of Variation, Some Overarching Issues, and General Conclusions. Evol Biol 2017; 44:451-475. [PMID: 29142334 PMCID: PMC5661022 DOI: 10.1007/s11692-017-9434-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting-sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties-can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailing edges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology.
Collapse
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
13
|
Ho EKH, Agrawal AF. Aging asexual lineages and the evolutionary maintenance of sex. Evolution 2017; 71:1865-1875. [PMID: 28444897 DOI: 10.1111/evo.13260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Finite populations of asexual and highly selfing species suffer from a reduced efficacy of selection. Such populations are thought to decline in fitness over time due to accumulating slightly deleterious mutations or failing to adapt to changing conditions. These within-population processes that lead nonrecombining species to extinction may help maintain sex and outcrossing through species level selection. Although inefficient selection is proposed to elevate extinction rates over time, previous models of species selection for sex assumed constant diversification rates. For sex to persist, classic models require that asexual species diversify at rates lower than sexual species; the validity of this requirement is questionable, both conceptually and empirically. We extend past models by allowing asexual lineages to decline in diversification rates as they age, that is nonrecombining lineages "senesce" in diversification rates. At equilibrium, senescing diversification rates maintain sex even when asexual lineages, at young ages, diversify faster than their sexual progenitors. In such cases, the age distribution of asexual lineages contains a peak at intermediate values rather than showing the exponential decline predicted by the classic model. Coexistence requires only that the average rate of diversification in asexuals be lower than that of sexuals.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
14
|
Sanglas A, Albarral V, Farfán M, Lorén JG, Fusté MC. Evolutionary Roots and Diversification of the Genus Aeromonas. Front Microbiol 2017; 8:127. [PMID: 28228750 PMCID: PMC5296313 DOI: 10.3389/fmicb.2017.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/18/2017] [Indexed: 12/02/2022] Open
Abstract
Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus Aeromonas by applying these methods widely used with eukaryotic taxa. Our analysis involved 150 Aeromonas strains using the concatenated sequences of two housekeeping genes (approximately 2,000 bp). Dating and diversification model analyses were performed using two different approaches: obtaining the consensus sequence from the concatenated sequences corresponding to all the strains belonging to the same species, or generating the species tree from multiple alignments of each gene. We used BEAST to perform a Bayesian analysis to estimate both the phylogeny and the divergence times. A global molecular clock cannot be assumed for any gene. From the chronograms obtained, we carried out a diversification analysis using several approaches. The results suggest that the genus Aeromonas began to diverge approximately 250 millions of years (Ma) ago. All methods used to determine Aeromonas diversification gave similar results, suggesting that the speciation process in this bacterial genus followed a rate-constant (Yule) diversification model, although there is a small probability that a slight deceleration occurred in recent times. We also determined the constant of diversification (λ) values, which in all cases were very similar, about 0.01 species/Ma, a value clearly lower than those described for different eukaryotes.
Collapse
Affiliation(s)
- Ariadna Sanglas
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona Barcelona, Spain
| | - Vicenta Albarral
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona Barcelona, Spain
| | - Maribel Farfán
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de BarcelonaBarcelona, Spain; Institut de Recerca de la Biodiversitat, Universitat de BarcelonaBarcelona, Spain
| | - J G Lorén
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona Barcelona, Spain
| | - M C Fusté
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de BarcelonaBarcelona, Spain; Institut de Recerca de la Biodiversitat, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
15
|
Fontaneto D, Barraclough TG. Do Species Exist in Asexuals? Theory and Evidence from Bdelloid Rotifers. Integr Comp Biol 2015; 55:253-63. [PMID: 25912362 DOI: 10.1093/icb/icv024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The possibility for independently evolving entities to form and persist in the absence of sexual recombination in eukaryotes has been questioned; nevertheless, there are organisms that are known to be asexual and that have apparently diversified into multiple species as recognized by taxonomists. These organisms have therefore been identified as an evolutionary paradox. We explore three alternative hypotheses attempting to solve the apparent paradox, focusing on bdelloid rotifers, the most studied group of organisms in which all species are considered asexual: (1) they may have some hidden form of sex; (2) species do not represent biological entities but simply convenient names; and (3) sex may not be a necessary requirement for speciation. We provide ample evidence against the first two hypotheses, reporting several studies supporting (1) bdelloids asexuality from different approaches, and (2) the existence of species from genetics, jaw morphology, ecology, and physiology. Thus, we (3) explore the role of sex in speciation comparing bdelloid and monogonont rotifers, and conclude with some caveats that could still change our understanding of bdelloid species.
Collapse
Affiliation(s)
- Diego Fontaneto
- *National Research Council, Institute of Ecosystem Study, Largo Tonolli 50, 28922 Verbania Pallanza, Italy;
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
16
|
Tang CQ, Obertegger U, Fontaneto D, Barraclough TG. Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evolution 2014; 68:2901-16. [PMID: 24975991 PMCID: PMC4262011 DOI: 10.1111/evo.12483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022]
Abstract
Why organisms diversify into discrete species instead of showing a continuum of genotypic and phenotypic forms is an important yet rarely studied question in speciation biology. Does species discreteness come from adaptation to fill discrete niches or from interspecific gaps generated by reproductive isolation? We investigate the importance of reproductive isolation by comparing genetic discreteness, in terms of intra- and interspecific variation, between facultatively sexual monogonont rotifers and obligately asexual bdelloid rotifers. We calculated the age (phylogenetic distance) and average pairwise genetic distance (raw distance) within and among evolutionarily significant units of diversity in six bdelloid clades and seven monogonont clades sampled for 4211 individuals in total. We find that monogonont species are more discrete than bdelloid species with respect to divergence between species but exhibit similar levels of intraspecific variation (species cohesiveness). This pattern arises because bdelloids have diversified into discrete genetic clusters at a faster net rate than monogononts. Although sampling biases or differences in ecology that are independent of sexuality might also affect these patterns, the results are consistent with the hypothesis that bdelloids diversified at a faster rate into less discrete species because their diversification does not depend on the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Cuong Q Tang
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, SL5 7PY, United Kingdom.
| | | | | | | |
Collapse
|
17
|
Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes. PLoS One 2014; 9:e88805. [PMID: 24586399 PMCID: PMC3930666 DOI: 10.1371/journal.pone.0088805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/16/2014] [Indexed: 12/05/2022] Open
Abstract
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process.
Collapse
|
18
|
Malekzadeh-Viayeh R, Pak-Tarmani R, Rostamkhani N, Fontaneto D. Diversity of the rotiferBrachionus plicatilisspecies complex (Rotifera: Monogononta) in Iran through integrative taxonomy. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Nasim Rostamkhani
- Department of Biology; Faculty of Sciences; Urmia University; Urmia Iran
| | - Diego Fontaneto
- National Research Council; Institute of Ecosystem Study; I-28922 Verbania Pallanza Italy
| |
Collapse
|
19
|
Janko K. Let us not be unfair to asexuals: their ephemerality may be explained by neutral models without invoking any evolutionary constraints of asexuality. Evolution 2013; 68:569-76. [PMID: 24236579 DOI: 10.1111/evo.12293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 10/10/2013] [Indexed: 01/22/2023]
Abstract
Phylogenetic studies typically demonstrate lower evolutionary ages of clones, relative to their sexual ancestors. This has often been attributed to heightened extinction risk of asexual organisms. We previously criticized such interpretations and demonstrated that the life span of clones is ultimately limited by neutral drift depending on the rate at which new clones are spawned into an asexual community of a finite size. Therefore, it is important to investigate whether the natural rates of such influxes are sufficiently high to account for the relative ephemerality of clones without assuming their increased extinction rate. I applied the neutral clonal turnover model to phylogenies of polyploid asexual ferns and simulated the coalescent trees over a wide range of demographic structures and sampling schemes. On parameterizing the model with biologically relevant estimates of population sizes and plant polyploidization rates, simulated clonal assemblages appeared younger than their sexual counterparts even in the absence of selection against clones. Therefore, differences observed between the ages of sexual and clonal lineages may be explained by the neutral clonal turnover. Researchers should consider the possibility that natural clones may get lost by neutral drift before their fate could eventually be affected by any long-term constraints of asexuality.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721, Liběchov, Czech Republic; Life Science Research Centre, Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
20
|
Rodriguero MS, Lanteri AA, Confalonieri VA. Speciation in the asexual realm: is the parthenogenetic weevil Naupactus cervinus a complex of species in statu nascendi? Mol Phylogenet Evol 2013; 68:644-56. [PMID: 23623993 DOI: 10.1016/j.ympev.2013.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 12/14/2022]
Abstract
Population genetic theory shows that asexual organisms may evolve into species, which behave as independent evolutionary units. As a result, they form genotypic clusters separated by deep gaps due to geographic isolation and/or divergent selection. Identification of several genetically divergent groups of weevils embodied in the nominal species Naupactus cervinus deserves further study, in order to test if these lineages are evolving independently. In the present paper we tested if the parthenogenetic weevil N. cervinus, native to South America and broadly distributed throughout the world, contains more than one evolutionary unit. For this purpose, we applied three different approaches, a multilocus phylogenetic analysis, the GMYC approach and the K/θ method. We accomplished these analyses through a survey of mitochondrial (COI and COII genes) and nuclear (ITS1 sequence) genetic variation and morphometric analysis in a sample which included individuals from different locations within the native geographic range of N. cervinus. In addition, we compared the divergence accumulated in this species with that in another weevil of the same tribe (Naupactini) showing identical reproductive mode to see if similar levels of morphological variation matches similar levels of genetic divergence. We report the presence of two independent evolutionary units living in sympatry in forest areas. The incongruence between mitochondrial and nuclear datasets analyzed herein reflects incomplete lineage sorting of the nuclear marker and different evolutionary rates between genomes. Ecological divergence driven by natural selection (sympatry) or secondary contact after geographic isolation (allopatry) might explain the deep gaps in mitochondrial phylogenies. Instead, Wolbachia infection was ruled out as a causal factor for such differentiation. We conclude that N. cervinus is probably a species complex with at least two well differentiated lineages that would represent a cluster of species in statu nascendi.
Collapse
Affiliation(s)
- M S Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | |
Collapse
|