1
|
Pennell TM, Katsuki M, Archer CR, Sharma MD, Okada K, Hosken DJ. Predation affects the evolution of sex-specific longevity. Biol Lett 2024; 20:20240451. [PMID: 39535110 PMCID: PMC11558850 DOI: 10.1098/rsbl.2024.0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Predation, a major cause of natural selection, is classically thought to target the weak and sick. However, predators can target animals with condition-dependent sexual traits, and therefore, high-quality individuals can also be the focus of predation. Thus, it is not always clear which individuals are the foci of predators or how this affects trait evolution. Here, we tested for evolutionary effects of sex-specific predation on male and female longevity using replicate populations of the broad-horned flour beetle Gnatocerus cornutus. We found that male-limited predation resulted in the evolution of reduced male and increased female longevity, while female-limited predation had no effects on the longevity of either sex. We also document the costs of reproduction. Coupled with other findings, our results suggest that predation impacts high-quality males and, because of negative intersexual genetic correlations, this increases female longevity.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, Penryn, UK
| | - Masako Katsuki
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo113-8657, Japan
| | - C. Ruth Archer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manmohan D. Sharma
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, Penryn, UK
| | - Kensuke Okada
- Laboratory of Evolutionary Ecology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
2
|
Tiwari RS, Bhaisare LY, Pathak S, Kumar B, Chaudhary DD. Biotic factors as key determinants for ovarian and oothecal developmental plasticity of a tortoise beetle. ZOOLOGY 2024; 167:126225. [PMID: 39520848 DOI: 10.1016/j.zool.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Ovarian development in r-selected species is a highly dynamic process widely studied in various insect groups. An array of biotic and abiotic factors may influence it. So, the present investigation was to evaluate the impact of a female's age and mating status on the ovarian development, ootheca formation, body colour polymorphism, and fat content of the tortoise beetle, Aspidomorpha miliaris (Fabricius). Females of a certain age and mating status were dissected to demonstrate changes in their ovarioles, lateral oviduct, accessory gland, elytral colour, fat body content, and body size. It was predicted that age or mating status would not affect the ovarian parameters like length and width of ovarioles, lateral oviducts, accessory glands, body size, fat body content, and elytral colour. However, the ootheca-forming modifications would be initiated by ageing and mating. The current study demonstrated the substantial effect of age and mating status on the growth of the accessory glands and ovarioles. On the other hand, fat body contents declined comparatively in multiply-mated females. Besides this, the beetle exhibits elytral colour polymorphism till sexual maturity. An accessory gland was exclusively detected in multiply-mated females. This discovery opens opportunities for further investigation into the precise function of the gland, which is likely involved in the formation of ootheca.
Collapse
Affiliation(s)
- Ruchita Shivprakash Tiwari
- Behavioral and Molecular Ecology and Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, M.P. 484887, India
| | - Lankesh Yashwant Bhaisare
- Behavioral and Molecular Ecology and Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, M.P. 484887, India
| | - Shivani Pathak
- Department of Geology, Indira Gandhi National Tribal University, Amarkantak, M.P. 484887, India
| | - Bhupendra Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Desh Deepak Chaudhary
- Behavioral and Molecular Ecology and Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, M.P. 484887, India.
| |
Collapse
|
3
|
Sanghvi K, Pizzari T, Sepil I. What does not kill you makes you stronger? Effects of paternal age at conception on fathers and sons. Evolution 2024; 78:1619-1632. [PMID: 38912848 DOI: 10.1093/evolut/qpae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Advancing male age is often hypothesized to reduce both male fertility and offspring quality due to reproductive senescence. However, the effects of advancing male age on reproductive output and offspring quality are not always deleterious. For example, older fathers might buffer the effects of reproductive senescence by terminally investing in reproduction. Similarly, males that survive to reproduce at an old age might carry alleles that confer high viability (viability selection), which are then inherited by offspring, or might have high reproductive potential (selective disappearance). Differentiating these mechanisms requires an integrated experimental study of paternal survival and reproductive performance, as well as offspring quality, which is currently lacking. Using a cross-sectional study in Drosophila melanogaster, we test the effects of paternal age at conception (PAC) on paternal survival and reproductive success, and on the lifespans of sons. We discover that mating at an old age is linked with decreased future male survival, suggesting that mating-induced mortality is possibly due to old fathers being frail. We find no evidence for terminal investment and show that reproductive senescence in fathers does not onset until their late-adult life. Additionally, we find that as a father's lifespan increases, his probability of siring offspring increases for older PAC treatments only. Lastly, we show that sons born to older fathers live longer than those born to younger fathers due to viability selection. Collectively, our results suggest that advancing paternal age is not necessarily associated with deleterious effects for offspring and may even lead to older fathers producing longer-lived offspring.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Tommaso Pizzari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Lorrain-Soligon L, Muller K, Delaby C, Thiéry D, Moreau J. Interaction between females and males grapevine moth Lobesia botrana modifies further mating preference. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104668. [PMID: 38942138 DOI: 10.1016/j.jinsphys.2024.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
During reproduction, females may boost their fitness by being selective based on direct material benefits provided by the males, such as nuptial gifts. In Lepidoptera, male provides a spermatophore containing nutrients. However, virgin males produce a bigger spermatophore, containing spermatozoa and nutrients, allowing higher female fertility. Lepidoptera females that could detect the sexual status of males may thus prefer a male without previous mating experience (i.e. a virgin male). This mate selection could be achieved by the use of chemical indices, such as sexual pheromones and cuticular compounds, known to be possibly exchanged during reproduction, and which can be indicators of a previous mating experience and known to be possibly sources of information exchanged. In this study, we experimentally presented Lobesia botrana virgin males with females in order for them to be exposed to females' natural sexual pheromones or cuticular compounds. 12 or 48 h after the exposure of males to either females' sexual pheromones or cuticular compounds, these males were confronted to naïve females, which have a choice between them or a virgin non-exposed males. We highlighted that, despite producing a spermatophore of similar volume, all exposed virgin males were less likely to mate with females 12 h after exposure, while after 48 h of exposure this is only the case for virgin males exposed to sexual pheromones. L. botrana females may thus discriminate male sexual experience based on chemical cues (either from cues transferred directly from females to males, or from changes in the cuticular or pheromone males' profile) indicating past mating experiences. Mating duration was longer for males exposed to sexual pheromones after 12 h only, and for males exposed to cuticular compounds after 48 h only. Pheromones signal might be more persistent over time and seems to more easily gather information for males. The physiological reasoning behind this result still needs to be investigated.
Collapse
Affiliation(s)
| | - Karen Muller
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Camille Delaby
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Denis Thiéry
- INRA UMR 1065 Santé et Agroecologie du Vignoble, Institut des Science de la Vigne et du Vin, Ave E. Bourleaux, F-33883 Villenave d'Ornon Cedex, France; Université de bordeaux, INRA UMR 1065, Save, Bordeaux Sciences Agro, Ave E. Bourleaux, 33883 Villenave d'Ornon Cedex, France
| | - Jérôme Moreau
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360 Villiers-en-bois, France
| |
Collapse
|
5
|
Gao K, van der Heide W, Muijderman D, Nichols S, Karwal C, Kuperus P, Groot AT. Ecological immunology: do sexual attraction and immunity trade-off through a desaturase? INSECT SCIENCE 2024. [PMID: 38769890 DOI: 10.1111/1744-7917.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Given the limited availability of resources in nature, sexual attractiveness may trade off with immunocompetence, as the immunocompetence handicap hypothesis (ICHH) posits. In invertebrates, a direct link between trade-offs through hormonal/molecular effectors in sexual signals and immunity has not been found so far. Here, we assessed how variation in sexual signals affected parasite infection in two sex pheromone selected lines of the moth Chloridea virescens: an attractive line with a low ratio of 16:Ald/Z11-16:Ald and an unattractive line with a high ratio. When infecting these lines with an apicomplexan parasite, we found that the attractive Low line was significantly more susceptible to the parasite infection than the unattractive High line. Since the ratio difference between these two lines is determined by a delta-11-desturase, we hypothesized that this desaturase may have a dual role, i.e., in the quality of the sexual signal as well as an involvement in immune response, comparable to testosterone in vertebrates. However, when we used CRISPR/cas9 to knockout delta-11-desturase in the attractive Low line, we found that the pheromonal phenotype did change to that of the High line, but the infection susceptibility did not. Notably, when checking the genomic location of delta-11-desaturase in the C. virescens, we found that mucin is adjacent to delta-11-desaturase. When comparing the mucin sequences in both lines, we found four nonsynonymous SNPs in the coding sequence, as well as intronic variation between the two lines. These differences suggest that genetic hitchhiking may explain the variation in susceptibility to parasitic infection.
Collapse
Affiliation(s)
- Ke Gao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Wout van der Heide
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Daphne Muijderman
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Sarah Nichols
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Peter Kuperus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Ristyadi D, He XZ, Wang Q. Resource allocation strategies for survival and reproduction by an invasive pest in response to intermittent fasting. Curr Zool 2023; 69:600-606. [PMID: 37637313 PMCID: PMC10449421 DOI: 10.1093/cz/zoac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 08/29/2023] Open
Abstract
Intermittent fasting (IF) is a type of dietary restriction that involves fasting periods in intervals, which has been used as a strategy to improve health and extend longevity. Regular fasting is common during the process of biological invasions in nature. Yet, it is not clear how invasive animals adjust their resource allocations to survival and reproduction when periodical starvation occurs. Here, we used Tetranychus ludeni, a haplodiploid spider mite and an important invasive pest of horticultural crops around the world, to investigate the effects of IF on its life history strategies. We show that IF increased the longevity in females but not in males probably because of differences in resource storage, metabolic rate, and mating cost between sexes. In response to IF, females traded off fecundity and egg size but not the number of daughters for longevity gain, suggesting that T. ludeni females can adjust their life history strategies for population survival and growth during invasion process. Eggs produced by fasted females realized the same hatch rate and resultant young had the same survival rate as those by unfasted ones. In addition, IF had transgenerational maternal effects which prolonged offspring development period. We suggest that the longer immature developmental period can increase the body size of resulting adults, compensating egg size loss for offspring fitness. Our findings provide insight into resource allocations as responses to fasting, knowledge of which can be used for evaluation of pest invasions and for management of animal survival and reproduction by dietary regulations.
Collapse
Affiliation(s)
- Dwi Ristyadi
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
- Agriculture Faculty, Jambi University, Km 15 Mendalo Darat 36361, Jambi, Indonesia
| | - Xiong Z He
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Qiao Wang
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
7
|
Pretterebner K, Pardo LM, Paschke K, Riveros MP. Influence of mating strategies on seminal material investment in crabs. Sci Rep 2022; 12:18376. [PMID: 36319667 PMCID: PMC9626634 DOI: 10.1038/s41598-022-21116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Reproduction involves high energetic costs which are related to behaviour and gamete production. In females energy allocation to gamete production has been well documented. However, estimations of male investment in seminal material are scarce. The present study aims to assess and compare male investment in four brachyuran species by determining biochemical substrates present in the vasa deferentia to subsequently estimate energetic investment during the reproductive cycle. We identified two groups with contrasting energy investments. Two species, Homalaspis plana and Romaleon setosum, showed high investment due to significant quantities of proteins and lipids. Both species are characterised by large and complex vasa deferentia, and the formation of a remarkably large sperm plug deposited to the female after copulation as a sperm competition avoidance strategy. In contrast, Metacarcinus edwardsii and Taliepus dentatus invested little energy in their smaller-sized and simpler vasa deferentia. Morpho-functional traits may play a key role in determining the investment, which may also be influenced by mechanisms (i.e. mating tactics) to prevent sperm competition and the intensity of polygyny. This study emphasises the high amount of energy males invest in seminal material and highlights the diversity of mating strategies in Brachyura, which are reflected even on the physiological level.
Collapse
Affiliation(s)
- Katrin Pretterebner
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile.
- Laboratorio Costero de Calfuco, Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile.
- Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), 5090000, Valdivia, Chile.
| | - Luis Miguel Pardo
- Laboratorio Costero de Calfuco, Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile
- Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), 5090000, Valdivia, Chile
| | - Kurt Paschke
- Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), 5090000, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, 5480000, Puerto Montt, Chile
| | - Marcela Paz Riveros
- Programa de Magister en Didáctica de Las Ciencias Experimentales, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2340000, Valparaíso, Chile
| |
Collapse
|
8
|
Regan CE, Pemberton JM, Pilkington JG, Smiseth P. Having a better home range does not reduce the cost of reproduction in Soay sheep. J Evol Biol 2022; 35:1352-1362. [PMID: 36063153 PMCID: PMC9826142 DOI: 10.1111/jeb.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 01/11/2023]
Abstract
A cost of reproduction may not be observable in the presence of environmental or individual heterogeneity because they affect the resources available to individuals. Individual space use is critical in determining both the resources available to individuals and the exposure to factors that mediate the value of these resources (e.g. competition and parasitism). Despite this, there has, to our knowledge, been little research to understand how between-individual differences in resource acquisition, caused by variation in space use, interact with environmental variation occurring at the population scale to influence estimates of the cost of reproduction in natural populations. We used long-term data from the St. Kilda Soay sheep population to understand how differences in age, relative home range quality, and average adult body mass, interacted with annual variation in population density and winter North Atlantic Oscillation index to influence over-winter survival and reproduction in the subsequent year, for females that had invested into reproduction to varying degrees. Our results suggest that Soay sheep females experience costs both in terms of future survival and future reproduction. However, we found little evidence that estimated costs of reproduction vary depending on relative home range quality. There are several possible causes for the lack of a relationship between relative home range quality and our estimate of the costs experienced by females. These include the potential for a correlation between relative home range quality and reproductive allocation to mask a relationship between home range quality and reproductive costs, as well as the potential for the benefit of higher quality home ranges being offset by higher densities. Nevertheless, our results raise questions regarding the presence or context-dependence of relationships between resource access and the estimated cost of reproduction.
Collapse
Affiliation(s)
- Charlotte E. Regan
- Institute for Evolutionary Biology, University of EdinburghEdinburghUK
- Department of ZoologyEdward Grey Institute, University of OxfordOxfordUK
| | | | | | - Per T. Smiseth
- Institute for Evolutionary Biology, University of EdinburghEdinburghUK
| |
Collapse
|
9
|
Louâpre P, Muller K, Bettencourt-Amarante S, Thiery D, Moreau J. Sexual audience affects male's reproduction investment without consequences on reproductive outputs. INSECT SCIENCE 2022; 29:1170-1180. [PMID: 34897988 DOI: 10.1111/1744-7917.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Males evolved plastic strategies to respond to male-male competition and exhibit adaptive traits and behaviors maximizing their access to the females and limiting sperm competition. Mating behaviors allow males to express quick responses to current sexual audience, that is, the number of nearby conspecifics prone to mate. In contrast, physiological responses are frequently delayed because they are constrained by the time and resources having to be mobilized to produce and export sperm and associated products. This is especially critical in species for which males produce spermatophores. Here we investigated in what extend moth males (the tortricid moth Lobesia botrana) producing spermatophores exhibit plastic behavioral and physiological responses to different sexual audiences before and during mating and the consequences for their reproductive output. We found that males adjusted their mating behaviors and spermatophore size to a potentially elevated risk of sperm competition perceived before mating. In addition, males responded to the closed presence of females during mating by reducing their mating duration. Surprisingly, the various behavioral and physiological responses we highlighted here were not fully reflected in their reproductive performance as we did not reveal any effect on fecundity and fertility of their mate. The selective pressure exerted on males experiencing male-male competition could thus be sufficient to trigger adjustment in male mating behaviors but constrains physiological responses according to the perception of competition.
Collapse
Affiliation(s)
- Philippe Louâpre
- UMR CNRS 6282 Biogeosciences, Université Bourgogne Franche-Comté, Dijon, France
| | - Karen Muller
- UMR CNRS 6282 Biogeosciences, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Denis Thiery
- INRA UMR 1065 Santé et Agroecologie du Vignoble, Institut des Science de la Vigne et du Vin, Villenave d'Ornon, Cedex, France
- INRA UMR 1065, Save, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, Cedex, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogeosciences, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Molleman F, Granados‐Tello J, Chapman CA, Tammaru T. Fruit‐feeding butterflies depend on adult food for reproduction: Evidence from longitudinal body mass and abundance data. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Freerk Molleman
- Department of Systematic Zoology Institute of Environmental Biology, Faculty of Biology, A. Mickiewicz University Poznań Poland
| | | | - Colin A. Chapman
- Center for the Advanced Study of Human Paleobiology The George Washington University Washington DC USA
| | - Toomas Tammaru
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
11
|
Kapila R, Poddar S, Meena N, Prasad NG. Investment in adult reproductive tissues is affected by larval growth conditions but not by evolution under poor larval growth conditions in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100027. [PMID: 36003263 PMCID: PMC9387493 DOI: 10.1016/j.cris.2021.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Growing at different larval densities affect the investment in reproductive tissues Increased larval density negatively affects the testis and accessory gland size Relative investment in testis is not affected by larval densities Increased larval densities affect relative accessory gland size negatively Adaptation to high larval crowding does not affect investment in reproductive tissues
In many insects, the larval environment is confined to the egg-laying site, which often leads to crowded larval conditions, exposing the developing larvae to poor resource availability and toxic metabolic wastes. Larval crowding imposes two opposing selection pressures. On one hand, due to poor nutritional resources during developmental stages, adults from the crowded larval environment have reduced investment in reproductive tissues. On the other hand, a crowded larval environment acts as a cue for future reproductive competition inducing increased investment in reproductive tissues. Both these selection pressures are likely affected by the level of crowding. The evolutionary consequence of adaptation to larval crowding environment on adult reproductive investment is bound to be a result of the interaction of these two opposing forces. In this study, we used experimentally evolved populations of Drosophila melanogaster adapted to larval crowding to investigate the effect of adaptation to larval crowding on investment in reproductive organs (testes and accessory glands) of males. Our results show that there is a strong effect of larval developmental environment on absolute sizes of testes and accessory glands. However, there was no effect of the developmental environment when testis size was scaled by body size. We also found that flies from crowded cultures had smaller accessory gland sizes relative to body size. Moreover, the sizes of the reproductive organs were not affected by the selection histories of the populations. This study highlights that adaptation to two extremely different developmental environments does not affect the patterns of reproductive investment. We discuss the possibility that differential investment in reproductive tissues could be influenced by the mating dynamics and/or investment in larval survival traits, rather than just the developmental environment of the populations.
Collapse
|
12
|
Cargnelutti F, Calbacho-Rosa L, Córdoba-Aguilar A, Peretti AV. Successive matings affect copulatory courtship but not sperm transfer in a spider model. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Previous studies have reported that males augment their reproductive success by increasing the number of females with which they copulate, and that such copulations are not energetically demanding in terms of trivial sperm production costs. However, we now know that males do pay reproductive costs. As males mate successively, a reduction in the performance of copulatory behaviours would be expected, as well as in the number of sperm transferred. Here we compared the duration of courtship, mating and post-insemination phase, the number of genital and non-genital copulatory courtship occurrences, and the number of sperm transferred in successive matings in Holocnemus pluchei spider males. As matings increased in males, there was no effect on the duration of courtship, mating or post-insemination phase. Interestingly, genital copulatory courtship varied in successive copulations depending on male size, but there was no change in the number of sperm transferred. In addition, the occurrence of non-genital copulatory courtship decreased along successive copulations. The negative effects of successive matings on copulatory courtship indicate that these behaviours are costly for males, except for the number of sperm transferred. Our research lays the foundation for future studies on male costs as a function of mating history in spiders.
Collapse
Affiliation(s)
- Franco Cargnelutti
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Lucia Calbacho-Rosa
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Ciudad Universitaria, 04510 Ciudad de México, México
| | - Alfredo Vicente Peretti
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| |
Collapse
|
13
|
Del Matto LA, Macedo-Rego RC, Santos ESA. Mate-guarding duration is mainly influenced by the risk of sperm competition and not by female quality in a golden orb-weaver spider. PeerJ 2021; 9:e12310. [PMID: 34733589 PMCID: PMC8544249 DOI: 10.7717/peerj.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Males are expected to mate with as many females as possible, but can maximize their reproductive success through strategic mating decisions. For instance, males can increase their own fitness by mating with high quality females that produce more offspring. Additionally, males can adjust mating effort based on the relative distribution of females and male competitors. To test factors that influence male mate choice, we assessed male mating decisions in the golden silk orb-weaver spider, Trichonephila clavipes (Nephilidae), a species in which females are polyandrous, males guard females before and after copulation occurs and large males are the most successful at guarding mates. We tested the hypothesis that males spend more time guarding high quality females that are spatially isolated, and when the risk of sperm competition is higher. We also hypothesized that this effect increases with male body size. We assessed solitary and aggregated female webs in the field and quantified female quality (i.e., female body condition), male size (i.e., male body size), the risk of sperm competition (i.e., number of males in each female web), and mate-guarding duration (i.e., number of days each male spent in each web). We found that mate-guarding behaviour is largely influenced by the presence of male competitors. In addition, male body size seems to moderately influence male guarding decisions, with larger males guarding for a longer time. Finally, female body condition and type of web (i.e., solitary or aggregated) seem to play small roles in mate-guarding behaviour. As mate-guarding duration increased by 0.718 day per each additional male competitor in the web, and guarding behaviour prevents males from seeking additional mates, it seems that guarding females can be considerably costly. We conclude that failing to guard a sexual partner promotes high costs derived from sperm competition, and a male cannot recover his relative loss in fertilization success by seeking and fertilizing more females. In addition, the search for more sexual partners can be constrained by possible high costs imposed by weight loss and fights against other males, which may explain why the type of web only moderately influenced male mate choice. Following the same rationale, if high-quality females are not easy to find and/or mating with a high-quality female demands much effort, males may search females and guard them regardless of female quality. In conclusion, the factor that most influences male mate-guarding behaviour among T. clavipes in the field is the risk of sperm competition.
Collapse
Affiliation(s)
- Lygia A Del Matto
- BECO do Departamento de Zoologia, Universidade de São Paulo, Sao Paulo, Brazil.,Programa de Pós-Graduação em Zoologia, Universidade de São Paulo, Sao Paulo, Brazil
| | - Renato C Macedo-Rego
- BECO do Departamento de Zoologia, Universidade de São Paulo, Sao Paulo, Brazil.,Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Sao Paulo, Brazil.,Research School of Biology, Australian National University, Canberra, Australia
| | - Eduardo S A Santos
- BECO do Departamento de Zoologia, Universidade de São Paulo, Sao Paulo, Brazil.,Programa de Pós-Graduação em Zoologia, Universidade de São Paulo, Sao Paulo, Brazil.,Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Sao Paulo, Brazil.,RH Lab, Banco Santander, São Paulo, Brazil
| |
Collapse
|
14
|
Šet J, Turk E, Golobinek R, Lokovšek T, Gregorič M, Lebrón SGQ, Kuntner M, Haddad CR, Čandek K, Kralj-Fišer S. Sex-specific developmental trajectories in an extremely sexually size dimorphic spider. Naturwissenschaften 2021; 108:54. [PMID: 34648079 DOI: 10.1007/s00114-021-01754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Adult body size, development time, and growth rates are components of organismal life histories, which crucially influence fitness and are subject to trade-offs. If selection is sex-specific, male and female developments can eventually lead to different optimal sizes. This can be achieved through developmental plasticity and sex-specific developmental trajectories. Spiders present suitable animals to study differences in developmental plasticity and life history trade-offs between the sexes, because of their pronounced sexual dimorphism. Here, we examine variation in life histories in the extremely sexually size dimorphic African hermit spider (Nephilingis cruentata) reared under standardized laboratory conditions. Females average 70 times greater body mass (and greater body size) at maturity than males, which they achieve by developing longer and growing faster. We find a small to moderate amount of variability in life history traits to be caused by family effects, comprising genetic, maternal, and early common environmental effects, suggesting considerable plasticity in life histories. Remarkably, family effects explain a higher variance in male compared to female life histories, implying that female developmental trajectories may be more responsive to environment. We also find sex differences in life history trade-offs and show that males with longer development times grow larger but exhibit shorter adult longevity. Female developmental time also correlates positively with adult body mass, but the trade-offs between female adult mass, reproduction, and longevity are less clear. We discuss the implications of these findings in the light of evolutionary trade-offs between life history traits.
Collapse
Affiliation(s)
- Janko Šet
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Eva Turk
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Rok Golobinek
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Tjaša Lokovšek
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Matjaž Gregorič
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | | | - Matjaž Kuntner
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, Evolutionary Zoology Laboratory, National Institute of Biology, Ljubljana, Slovenia
| | - Charles R Haddad
- Department of Zoology & Entomology, University of the Free State, Bloemfontein, South Africa
| | - Klemen Čandek
- Department of Organisms and Ecosystems Research, Evolutionary Zoology Laboratory, National Institute of Biology, Ljubljana, Slovenia
| | - Simona Kralj-Fišer
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia.
| |
Collapse
|
15
|
How healthy is your mate? Sex-specific consequences of parasite infections in the moth Helicoverpa armigera. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Ahronberg A, Scharf I. Social isolation interaction with the feeding regime differentially affects survival and results in a hump-shaped pattern in movement activity. Behav Processes 2021; 190:104460. [PMID: 34256142 DOI: 10.1016/j.beproc.2021.104460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
Eusocial insects depend on their colonies, and it is therefore clear why isolation triggers many negative effects on isolated individuals. Here, we examined the effect of social isolation on the desert ant Cataglyphis niger, asking whether isolation, either with access to food or under starvation, impairs survival, and whether isolation modifies movement activity and digging to bypass an obstacle. Social isolation led to shorter survival but only when food was provided. This effect might be due to food not being digested correctly under isolation. Although isolated ant workers were more active immediately post isolation than 2-24 hours later, their movement moderately increased two days post isolation. We suggest that the changes in movement activity are adaptive: first, the worker increases activity intended to reunite it with the lost colony. Then, when the colony is not found, it reduces activity to conserve energy. It later increases activity as a final attempt to detect the colony. We expected isolated workers to dig faster to bypass an obstacle, but we did not detect any effect on digging behavior. We demonstrate here the complex effects of isolation on survival and movement activity, in interaction with additional factors - feeding and isolation duration.
Collapse
Affiliation(s)
- Ariel Ahronberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
McMahon S, Matzke M, Tuni C. Food Limitation but Not Enhanced Rates of Ejaculate Production Imposes Reproductive and Survival Costs to Male Crickets. Cells 2021; 10:cells10061498. [PMID: 34203610 PMCID: PMC8232169 DOI: 10.3390/cells10061498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Estimating costs of ejaculate production is challenging. Metabolic investment in ejaculates may come at the expense of other physiological functions and may negatively affect future reproduction and/or survival. These trade-offs are especially likely to occur under constrained resource pools (e.g., poor nutrition). Here, we investigated costs of ejaculate production via trade-offs in the field cricket Gryllus bimaculatus. We experimentally increased rates of ejaculate production, while keeping an unmanipulated group, in adult males kept at high and low feeding regimes and tested the effects of our treatments on (i) somatic maintenance (i.e., changes in male body mass), (ii) future reproduction (i.e., the likelihood of producing a spermatophore and the viability of its sperm), and (iii) lifetime survival and longevity. We predicted investment in ejaculates to impinge upon all measured responses, especially in low-fed individuals. Instead, we only found negative effects of food limitation, suggesting low or undetectable costs of spermatophore production. High mating rates may select for males to maximize their capacity of ejaculate production, making ejaculate traits less prone to trade-offs with other fitness-related life history traits. Nevertheless, males were impaired due to nutrient deficiency in producing viable ejaculates, suggesting condition-dependent costs for ejaculate production.
Collapse
|
18
|
Bagchi B, Corbel Q, Khan I, Payne E, Banerji D, Liljestrand-Rönn J, Martinossi-Allibert I, Baur J, Sayadi A, Immonen E, Arnqvist G, Söderhäll I, Berger D. Sexual conflict drives micro- and macroevolution of sexual dimorphism in immunity. BMC Biol 2021; 19:114. [PMID: 34078377 PMCID: PMC8170964 DOI: 10.1186/s12915-021-01049-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host-pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. RESULTS We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. CONCLUSIONS Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host-pathogen dynamics in sexually reproducing organisms.
Collapse
Affiliation(s)
- Basabi Bagchi
- Department of Biology, Ashoka University, Sonipat, India
| | - Quentin Corbel
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Imroze Khan
- Department of Biology, Ashoka University, Sonipat, India
| | - Ellen Payne
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Johanna Liljestrand-Rönn
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Biochemistry, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Program of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Program of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Li GY, Zhang ZQ. Sex-specific response to delayed and repeated mating in spider mite Tetranychus urticae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:49-56. [PMID: 32517821 DOI: 10.1017/s0007485320000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sexual interaction is an important activity that determines the reproductive schedule of organisms and can ultimately influence the fitness traits of both sexes. Although the influence of sexual interaction on the fitness of females has been extensively determined, little is known about the effects on males, which often have different mating strategies and optimal mating regimes from those of females. To understand how mating regimes (timing and frequency) modulate the fitness in both sexes, we used spider mite (Tetranychus urticae) to investigate the influence of delayed mating and repeated mating on the fitness of male and female. For females, the unmated and the delayed mating females outlived those mated immediately after adult emergence. The repeated mating shortened the lifespan of females that mated at 1-day-old, but not that mated 7-day-old. However, no significant variation in lifespan was observed for males across different mating regimes. We found although delayed mating significantly reduced the daily reproductive rate of the females, there was no significant difference in lifetime reproduction of females across treatments because the delayed mating females increased their reproductive lifespan as a compensation. Our study highlighted that the time and frequency of sexual interaction showed a sex-specific consequence on male and female spider mites, indicating that sexual interaction incurs a higher cost to females which have a much lower optimal mating frequency than males.
Collapse
Affiliation(s)
- Guang-Yun Li
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Manaaki Whenua - Landcare Research, 231 Morrin Road, Auckland1072, New Zealand
| | - Zhi-Qiang Zhang
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Manaaki Whenua - Landcare Research, 231 Morrin Road, Auckland1072, New Zealand
| |
Collapse
|
20
|
Šmejkal M, Bartoň D, Brabec M, Sajdlová Z, Souza AT, Moraes KR, Soukalová K, Blabolil P, Vejřík L, Kubečka J. Climbing up the ladder: male reproductive behaviour changes with age in a long-lived fish. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02961-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
High reproductive performance is the key attribute of male fitness, especially due to the high reproductive skew among the males of most animal species. Males of long-lived iteroparous species have opportunities to improve upon their previous reproductive attempts with increasing age. We collected individual-specific reproductive behaviour and age data on a cyprinid fish, the asp (Leuciscus aspius), from 2015 to 2019. We tested whether males changed their performance over time using a unique dataset where individual performance was recorded yearly with passive telemetry. Individual fish behaviour was tracked from one to five reproductive seasons at least a year after the tagging. Fish were scored by measures of quality (first arrival time, number of visits and time spent in the reproductive grounds, and encountered proportion of males to all adult fish). In general, fish improved in the first three metrics with age, suggesting a shift towards behaviours likely to enhance reproductive success as individuals aged. A larger size at tagging was predictive of earlier fish arrival on the spawning ground in subsequent years. Our study therefore demonstrates the importance of age as a factor when considering the potential reproductive success of long-lived fish species.
Significance statement
High reproductive performance is the key attribute of male fitness. Males of long-lived species reproducing multiple times in their life have opportunities to improve upon their previous reproductive performance with increasing age. In this 5-year study, we tracked a large cyprinid fish with telemetry systems during their reproduction. We investigated the age-related behavioural changes in males and demonstrated the improvement of male reproductive timing and length of stay with potential repercussions for male’s reproductive output. We emphasize the importance of old and experienced individuals among the fish population, which are often targeted and selectively removed from the human-managed waters.
Collapse
|
21
|
Sepil I, Hopkins BR, Dean R, Bath E, Friedman S, Swanson B, Ostridge HJ, Harper L, Buehner NA, Wolfner MF, Konietzny R, Thézénas ML, Sandham E, Charles PD, Fischer R, Steinhauer J, Kessler BM, Wigby S. Male reproductive aging arises via multifaceted mating-dependent sperm and seminal proteome declines, but is postponable in Drosophila. Proc Natl Acad Sci U S A 2020; 117:17094-17103. [PMID: 32611817 PMCID: PMC7382285 DOI: 10.1073/pnas.2009053117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Declining ejaculate performance with male age is taxonomically widespread and has broad fitness consequences. Ejaculate success requires fully functional germline (sperm) and soma (seminal fluid) components. However, some aging theories predict that resources should be preferentially diverted to the germline at the expense of the soma, suggesting differential impacts of aging on sperm and seminal fluid and trade-offs between them or, more broadly, between reproduction and lifespan. While harmful effects of male age on sperm are well known, we do not know how much seminal fluid deteriorates in comparison. Moreover, given the predicted trade-offs, it remains unclear whether systemic lifespan-extending interventions could ameliorate the declining performance of the ejaculate as a whole. Here, we address these problems using Drosophila melanogaster. We demonstrate that seminal fluid deterioration contributes to male reproductive decline via mating-dependent mechanisms that include posttranslational modifications to seminal proteins and altered seminal proteome composition and transfer. Additionally, we find that sperm production declines chronologically with age, invariant to mating activity such that older multiply mated males become infertile principally via reduced sperm transfer and viability. Our data, therefore, support the idea that both germline and soma components of the ejaculate contribute to male reproductive aging but reveal a mismatch in their aging patterns. Our data do not generally support the idea that the germline is prioritized over soma, at least, within the ejaculate. Moreover, we find that lifespan-extending systemic down-regulation of insulin signaling results in improved late-life ejaculate performance, indicating simultaneous amelioration of both somatic and reproductive aging.
Collapse
Affiliation(s)
- Irem Sepil
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom;
| | - Ben R Hopkins
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Department of Ecology and Evolution, University of California, Davis, CA 95616
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, United Kingdom
| | - Eleanor Bath
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | | | - Ben Swanson
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | - Harrison J Ostridge
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, United Kingdom
| | - Lucy Harper
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- School of Biology, University of St Andrews, KY16 9ST St Andrews, United Kingdom
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Rebecca Konietzny
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Marie-Laëtitia Thézénas
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Elizabeth Sandham
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | - Philip D Charles
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | | | - Benedikt M Kessler
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Stuart Wigby
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
22
|
Khan MK. Female prereproductive coloration reduces mating harassment in damselflies. Evolution 2020; 74:2293-2303. [PMID: 32573766 DOI: 10.1111/evo.14048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/09/2020] [Accepted: 06/18/2020] [Indexed: 12/01/2022]
Abstract
Conspicuous female coloration can evolve through male mate choice or via female-female competition thereby increasing female mating success. However, when mating is not beneficial, such as in pre-reproductive females, selection should favor cryptic rather than conspicuous coloration to avoid male detection and the associated harassment. Nevertheless, conspicuous female coloration occurs in many prereproductive animals, and its evolution remains an enigma. Here, I studied conspicuous female coloration in Agriocnemis femina damselflies, in which the conspicuous red color of the immature females changes to a less conspicuous green approximately a week after their emergence. I measured body size, weight, and egg numbers of the female morphs and found that red females are smaller and lighter and do not carry developed eggs. Finally, I calculated the occurrence frequency and mating frequency of red and green females in several populations over a three-year period. The results demonstrate that red females mated less frequently than green females even when red females were the abundant morph in the populations. I concluded that conspicuous female coloration is likely to function as a warning signal of sexual unprofitability, thereby reducing sexual harassment for females and unprofitable mating for males.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
23
|
Gao K, van Wijk M, Clement Z, Egas M, Groot AT. A life-history perspective on sexual selection in a polygamous species. BMC Evol Biol 2020; 20:53. [PMID: 32380947 PMCID: PMC7206733 DOI: 10.1186/s12862-020-01618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Background Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders. Results We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings. Conclusion Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.
Collapse
Affiliation(s)
- Ke Gao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Zoe Clement
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands. .,Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany.
| |
Collapse
|
24
|
|
25
|
Does seed size mediate sex-specific reproduction costs in the Callosobruchus maculatus bean beetle? PLoS One 2019; 14:e0225967. [PMID: 31830085 PMCID: PMC6907851 DOI: 10.1371/journal.pone.0225967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/15/2019] [Indexed: 11/19/2022] Open
Abstract
There is a trade-off between reproductive effort and adult longevity, and when resource allocation is taken into account, it is especially pronounced in species that have aphagous adult forms. This trade-off may be further complicated by environmental factors such as nutrient availability during larval development and by the other sex, which influences the costs of reproduction due to the presentation of nuptial gifts. Here, we examined the influence of larval nutrient quantity on the sex-specific longevity costs of reproduction in the gift-giving seed beetle Callosobruchus maculatus. We found no indication that differences in the nutrient quality of larger and smaller host seeds influence survival in virgin and reproducing individuals or nuptial gift size in reproducing individuals. However, in the case of reproducing individuals, the effect of seed size on survival was statistically marginal. Therefore, we advise taking this into account when investigating reproductive efforts in this species. We have also observed interesting interactions between male and female reproductive costs. While females had generally higher mortality than males, nuptial gifts resulted in lowered female mortality and increased male mortality. Additionally, we found a possibly non-linear relationship between nuptial gift size and the offspring production rate of female recipients.
Collapse
|
26
|
Kiss B, Rádai Z, Toft S, Samu F. Sperm competition tactics shape paternity: adaptive role of extremely long copulations in a wolf spider. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ekechukwu NE, Tripet F. Current versus future reproductive investment adaptive responses in adult Anopheles coluzzii malaria mosquitoes: hydric-stressed males give it all. Parasit Vectors 2019; 12:377. [PMID: 31358037 PMCID: PMC6664720 DOI: 10.1186/s13071-019-3608-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022] Open
Abstract
Background Life history theory predicts that an individualʼs current reproductive investment should depend on its future reproductive value. A variety of intrinsic biotic and extrinsic factors influence reproductive value, including age, health status and current environmental conditions. Phenotypic plastic reproductive decisions are particularly crucial in species with limited mating and breeding opportunities. In the malaria mosquito Anopheles coluzzii, the combination of male-male competition and female monandry results in male reproductive success being dependent on limited mating opportunities and sperm reserves. Short life spans combined with 3–4 day gonotrophic cycles imply that females can produce only a limited number of egg-batches in their lifetime and rely on a single maleʼs insemination to do so. Here we experimentally tested the effect of hydric stress on male sperm transfer and female sperm maintenance in this important vector species. Methods Virgin males and females were stressed prior to mating to simulate environmental uncertainty, hence the prospect of a decreased lifespan. They were then paired overnight with non-stressed mates in standardized mating assays. Sperm transfer, uptake and maintenance were quantified using qPCR, and sperm activity determined via video recording. Results When exposed to hydric stress, males responded by increasing their current reproductive investment and transferred significantly larger amounts of sperm to females. There was no significant increase in the mean number of females inseminated overnight by stressed males. In contrast, females did not significantly change their sperm uptake following stress nor did they alter their sperm maintenance strategy after 7-day post-mating hydric stress as measured through sperm activity level and sperm cells quantification. Conclusions As predicted by life-history theory, pre-mating hydric stress was associated with an increase in male current reproductive effort in the form of increased sperm transfer. In contrast, pre and post-mating hydric stress had no impact on sperm uptake and maintenance by females, which is compatible with the prediction that females maximize their reproductive value by withstanding stress periods until a blood meal opportunity and maintain sperm quality towards future egg production.
Collapse
Affiliation(s)
- Nkiru E Ekechukwu
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, ST5 5BG, UK.,Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
28
|
Magris M, Tuni C. Enough for all: no mating effort adjustment to varying mate availability in a gift-giving spider. Behav Ecol 2019. [DOI: 10.1093/beheco/arz102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Males of a gift-giving spider do not modify their allocation to reproduction when mating opportunities vary. Due to their costly courtship via provision of food gifts to females, with high female availability males should reduce their reproductive investment per partner to avoid exhausting their energetic budget too early. Our findings suggest instead that males may be able to enlarge their total reproductive budget, possibly drawing resources from their food gifts by partially feeding on them.
Collapse
Affiliation(s)
- Martina Magris
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Tuni
- Department of Biology, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Tropea C, Sganga DE, López Greco LS. Egg production in relation to paternal weight in a freshwater caridean shrimp (Decapoda). J Zool (1987) 2019. [DOI: 10.1111/jzo.12683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Tropea
- Departamento de Biodiversidad y Biología Experimental Facultad de Ciencias Exactas y Naturales Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos CONICET Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) Universidad de Buenos Aires Buenos Aires Argentina
| | - D. E. Sganga
- Departamento de Biodiversidad y Biología Experimental Facultad de Ciencias Exactas y Naturales Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos CONICET Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) Universidad de Buenos Aires Buenos Aires Argentina
| | - L. S. López Greco
- Departamento de Biodiversidad y Biología Experimental Facultad de Ciencias Exactas y Naturales Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos CONICET Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
30
|
Liu ZX, Yang P, Zhang Y, Li ZB, Kjellberg F. Antennae and the role of olfaction and contact stimulation in mate recognition by males of the pollinating fig wasp Ceratosolen gravelyi (Hymenoptera: Agaonidae). J NAT HIST 2019. [DOI: 10.1080/00222933.2019.1609112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhi-Xiang Liu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming, PR, China
| | - Pei Yang
- Library of TCM, Yunnan University of Traditional Chinese Medicine, Kunming, PR, China
| | - Yuan Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming, PR, China
| | - Zong-Bo Li
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming, PR, China
| | - Finn Kjellberg
- CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, IRD, Montpellier, France
| |
Collapse
|
31
|
LeGrice RJ, Tezanos‐Pinto G, de Villemereuil P, Holwell GI, Painting CJ. Directional selection on body size but no apparent survival cost to being large in wild New Zealand giraffe weevils. Evolution 2019; 73:762-776. [DOI: 10.1111/evo.13698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/28/2022]
Affiliation(s)
| | - Gabriela Tezanos‐Pinto
- Coastal‐Marine Research Group, INMS
- Professional and Continuing EducationMassey University Auckland 0745 New Zealand
| | | | | | | |
Collapse
|
32
|
Fox RJ, Gearing EE, Jennions MD, Head ML. Variation in the condition-dependence of individual sexual traits in male eastern mosquitofish, Gambusia holbrooki. Behav Ecol 2019. [DOI: 10.1093/beheco/arz002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Rebecca J Fox
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
33
|
Picchi L, Lorenzi MC. Gender-related behaviors: evidence for a trade-off between sexual functions in a hermaphrodite. Behav Ecol 2019. [DOI: 10.1093/beheco/arz014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Laura Picchi
- LEEC—Laboratoire d’Ethologie Expérimentale et Comparée, Université Paris 13, Sorbonne Paris Cité, J.-B. Clément, Villetaneuse, France
| | - Maria Cristina Lorenzi
- LEEC—Laboratoire d’Ethologie Expérimentale et Comparée, Université Paris 13, Sorbonne Paris Cité, J.-B. Clément, Villetaneuse, France
| |
Collapse
|
34
|
Flintham EO, Yoshida T, Smith S, Pavlou HJ, Goodwin SF, Carazo P, Wigby S. Interactions between the sexual identity of the nervous system and the social environment mediate lifespan in Drosophila melanogaster. Proc Biol Sci 2018; 285:rspb.2018.1450. [PMID: 30487307 PMCID: PMC6283938 DOI: 10.1098/rspb.2018.1450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Sex differences in lifespan are ubiquitous, but the underlying causal factors remain poorly understood. Inter- and intrasexual social interactions are well known to influence lifespan in many taxa, but it has proved challenging to separate the role of sex-specific behaviours from wider physiological differences between the sexes. To address this problem, we genetically manipulated the sexual identity of the nervous system-and hence sexual behaviour-in Drosophila melanogaster, and measured lifespan under varying social conditions. Consistent with previous studies, masculinization of the nervous system in females induced male-specific courtship behaviour and aggression, while nervous system feminization in males induced male-male courtship and reduced aggression. Control females outlived males, but masculinized female groups displayed male-like lifespans and male-like costs of group living. By varying the mixture of control and masculinized females within social groups, we show that male-specific behaviours are costly to recipients, even when received from females. However, consistent with recent findings, our data suggest courtship expression to be surprisingly low cost. Overall, our study indicates that nervous system-mediated expression of sex-specific behaviour per se-independent of wider physiological differences between the sexes, or the receipt of aggression or courtship-plays a limited role in mediating sex differences in lifespan.
Collapse
Affiliation(s)
- Ewan O. Flintham
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK,Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK,e-mail:
| | - Tomoyo Yoshida
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK
| | - Sophie Smith
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK
| | - Hania J. Pavlou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Stephen F. Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Pau Carazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 5PS, UK
| |
Collapse
|
35
|
Duxbury AE, Weathersby B, Sanchez Z, Moore PJ. A study of the transit amplification divisions during spermatogenesis in Oncopetus fasciatus to assess plasticity in sperm numbers or sperm viability under different diets. Ecol Evol 2018; 8:10460-10469. [PMID: 30464818 PMCID: PMC6238124 DOI: 10.1002/ece3.4511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/16/2018] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
Oncopeltus fasciatus males fed the ancestral diet of milkweed seeds prioritize reproduction over lifespan as evidenced by higher rates of fertility and shorter lifespans than males from the same population fed the adapted diet of sunflower seeds. We examined the proximate mechanisms by which milkweed-fed males maintained late-life fertility. We tested the hypothesis that older milkweed-fed males maintained fertility by producing more, higher quality sperm. Our results, that older males have more sperm, but their sperm do not have higher viability, are in general agreement with other recent studies on how nutrition affects male fertility in insects. We further examined the mechanisms by which sperm are produced by examining the progression of spermatogonial cells through the cell cycle during the transit amplification divisions. We demonstrated that diet affects the likelihood of a spermatocyst being in the S-phase or M-phase of the cell cycle. Given work in model systems, these results have implications for subtle effects on sperm quality either through replication stress or epigenetic markers. Thus, viability may not be the best marker for sperm quality and more work is called for on the mechanisms by which the germline and the production of sperm mediate the cost of reproduction.
Collapse
|
36
|
Koppik M, Ruhmann H, Fricke C. The effect of mating history on male reproductive ageing in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:16-24. [PMID: 30312587 DOI: 10.1016/j.jinsphys.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Mating bears costs, but how these costs affect the senescence of reproductive traits in males has received relatively little attention. Males of many species show reduced benefits from pre- and post-copulatory reproductive traits during ageing. Senescence of post-copulatory reproductive traits is often linked to a reduction in sperm quantity and quality, but can also be a consequence of changes in seminal fluid proteins that are transferred alongside sperm during mating. Here we investigated how mating history affects male reproductive ageing, especially at the post-copulatory level, using Drosophila melanogaster, a species in which links between seminal fluid proteins and male reproductive traits are well established. Besides a male cohort kept virgin until the start of the experiment we also included a cohort of males kept together with females allowing for ample mating opportunities. With these males we conducted a series of behavioral experiments covering several aspects of male reproductive success with males ranging in age from 4 days to 6 weeks after eclosion. Additionally, we investigated the storage capacity of male accessory glands (AG), the production site of the majority of seminal fluid proteins. We found male reproductive success to decline with increasing male age and, most importantly, males with prior matings showed a reduced performance in pre-copulatory success. However, our data suggest a constant short-term cost of mating rather than an accelerated senescence of pre-copulatory traits. In contrast, senescence of post-copulatory reproductive traits differed between mated and virgin males, hinting at mating costs in males altering the ageing process. We could not find any differences in the capacity of the AG to store seminal fluid proteins, however, our data suggest that old males transfer fewer seminal fluid proteins in a single mating. We conclude that a variety of traits is affected by male reproductive ageing in D. melanogaster with the cost of mating varying in its impact on senescence in these traits.
Collapse
Affiliation(s)
- Mareike Koppik
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, D-48149 Muenster, Germany.
| | - Hanna Ruhmann
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, D-48149 Muenster, Germany; Muenster Graduate School of Evolution, University of Muenster, Huefferstr. 1a, D-48149 Muenster, Germany.
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, D-48149 Muenster, Germany.
| |
Collapse
|
37
|
Noguera JC. Crickets increase sexual signalling and sperm protection but live shorter in the presence of rivals. J Evol Biol 2018; 32:49-57. [DOI: 10.1111/jeb.13390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
Affiliation(s)
- José C. Noguera
- Grupo de Ecología Animal; Universidade de Vigo, Torre CACTI; Vigo Spain
| |
Collapse
|
38
|
Cory AL, Schneider JM. Mate availability does not influence mating strategies in males of the sexually cannibalistic spider Argiope bruennichi. PeerJ 2018; 6:e5360. [PMID: 30123703 PMCID: PMC6086085 DOI: 10.7717/peerj.5360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background Sexual selection theory predicts that male investment in a current female should be a function of female density and male competition. While many studies have focused on male competition, the impact of female density on male mating investment has been widely neglected. Here, we aimed to close this gap and tested effects of mate density on male mating decisions in the orb-web spider Argiope bruennichi. Males of this species mutilate their genitalia during copulation, which reduces sperm competition and limits their mating rate to a maximum of two females (bigyny). The mating rate is frequently further reduced by female aggression and cannibalization. Males can reduce the risk of cannibalism if they jump off the female in time, but will then transfer fewer sperm. An alternative solution of this trade-off is to copulate longer, commit self-sacrifice and secure higher minimal paternity. The self-sacrificial strategy may be adaptive if prospective mating chances are uncertain. In A. bruennichi, this uncertainty may arise from quick changes in population dynamics. Therefore, we expected that males would immediately respond to information about low or high mate availability and opt for self-sacrifice after a single copulation under low mate availability. If male survival depends on information about prospective mating chances, we further predicted that under high mate availability, we would find a higher rate of males that leave the first mating partner to follow a bigynous mating strategy. Method We used naïve males and compared their mating decisions among two treatments that differed in the number of signalling females. In the high mate availability treatment, males perceived pheromone signals from four adult, virgin females, while in the low mate availability treatment only one of four females was adult and virgin and the other three were penultimate and unreceptive. Results Males took more time to start mate searching if mate availability was low. However, a self-sacrificial strategy was not more likely under low mate availability. We found no effects of treatment on the duration of copulation, the probability to survive the first copulation or the probability of bigyny. Interestingly, survival chances depended on male size and were higher in small males. Discussion Our results do not support the hypothesis that mate density variation affects male mating investment, although they clearly perceived mate density, which they presumably assessed by pheromone quantity. One reason for the absence of male adjustments to mating tactics could be that adaptations to survive female attacks veil adaptations that facilitate mating decisions.
Collapse
Affiliation(s)
- Anna-Lena Cory
- Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | | |
Collapse
|
39
|
Jensen K, Silverman J. Frequently mated males have higher protein preference in German cockroaches. Behav Ecol 2018. [DOI: 10.1093/beheco/ary104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kim Jensen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Bioscience, Aarhus University, Vejlsøvej, Silkeborg, Denmark
| | - Jules Silverman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
40
|
Same-sex courtship behaviors in male-biased populations: evidence for the mistaken identity hypothesis. Acta Ethol 2018. [DOI: 10.1007/s10211-018-0293-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Magris M, Chimetto G, Rizzi S, Pilastro A. Quick-change artists: male guppies pay no cost to repeatedly adjust their sexual strategies. Behav Ecol 2018. [DOI: 10.1093/beheco/ary087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martina Magris
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| | - Gianluca Chimetto
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| | - Sofia Rizzi
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova via U. Bassi, Padua, Italy
| |
Collapse
|
42
|
|
43
|
|
44
|
Brenman-Suttner DB, Long SQ, Kamesan V, de Belle JN, Yost RT, Kanippayoor RL, Simon AF. Progeny of old parents have increased social space in Drosophila melanogaster. Sci Rep 2018; 8:3673. [PMID: 29487349 PMCID: PMC5829228 DOI: 10.1038/s41598-018-21731-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 02/09/2018] [Indexed: 01/07/2023] Open
Abstract
We report the effects of aging and parental age in Drosophila melanogaster on two types of responses to social cues: the choice of preferred social spacing in an undisturbed group and the response to the Drosophila stress odorant (dSO) emitted by stressed flies. The patterns of changes during aging were notably different for these two social responses. Flies were initially closer in space and then became further apart. However, the pattern of change in response to dSO followed a more typical decline in performance, similarly to changes in locomotion. Interestingly, the increased social space of old parents, as well as their reduced performance in avoiding dSO, was passed on to their progeny, such that young adults adopted the behavioural characteristic of their old parents. While the response to social cues was inherited, the changes in locomotion were not. We were able to scale the changes in the social space of parents and their progeny by accelerating or decelerating the physiological process of aging by increasing temperatures and exposure to oxidative stress, or via caloric restriction, respectively. Finally, when we aged only one parent, only the male progeny of old fathers and the progeny of very old mothers were more distant.
Collapse
Affiliation(s)
| | - Shirley Q Long
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Vashine Kamesan
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jade N de Belle
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Ryley T Yost
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | - Anne F Simon
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
45
|
Colpo KD, López-Greco LS. Dynamics of energy reserves and the cost of reproduction in female and male fiddler crabs. ZOOLOGY 2018; 126:11-19. [DOI: 10.1016/j.zool.2018.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/04/2017] [Accepted: 01/09/2018] [Indexed: 11/27/2022]
|
46
|
Facon B, Estoup A, Hufbauer RA, Foucaud J, Tayeh A. Mating Status Influences Cold Tolerance and Subsequent Reproduction in the Invasive Ladybird Harmonia axyridis. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
47
|
Baruch O, Mendel Z, Scharf I, Harari AR. Mating system, mate choice and parental care in a bark beetle. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:611-619. [PMID: 28382882 DOI: 10.1017/s0007485317000311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cypress bark beetle, Phloeosinus armatus, is a common element of the dying cypress tree system in East-Mediterranean countries. Adult beetles congregate for breeding on this ephemeral resource. We studied three traits that characterize this beetle's sexual behavior and linked them to its reproductive success: mating system, mate choice, and parental care. We found that the females are the 'pioneering sex', excavating the mating chamber. The average female is slightly larger than the male, and female and male body size is correlated, demonstrating size-assortative mating. The time it takes for a male to enter the mating chamber is positively correlated with female size and negatively correlated with its own size, which is perhaps responsible for this assortative mating. Males remain in the gallery during the period of oviposition, gradually leaving soon after the eggs hatch. The number of eggs laid and tunnel length are positively correlated with male body size. Finally, in the presence of both parents, more eggs are laid than when the female alone is present, demonstrating the important contribution of biparental care for reproductive success. We suggest that the interaction between a monogamous mating system, assortative mating, and biparental care contributes to reproductive success.
Collapse
Affiliation(s)
- O Baruch
- Department of Entomology,The Volcani Center,Bet Dagan,Israel
| | - Z Mendel
- Department of Entomology,The Volcani Center,Bet Dagan,Israel
| | - I Scharf
- Department of Zoology,Faculty of Life Sciences,Tel Aviv University,Tel Aviv,Israel
| | - A R Harari
- Department of Entomology,The Volcani Center,Bet Dagan,Israel
| |
Collapse
|
48
|
Gress BE, Pitnick S. Size-dependent ejaculation strategies and reproductive success in the yellow dung fly, Scathophaga stercoraria. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Tuni C, Weber S, Bilde T, Uhl G. Male spiders reduce pre- and postmating sexual investment in response to sperm competition risk. Behav Ecol 2017. [DOI: 10.1093/beheco/arx061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
|