1
|
Li Y, Guo L, Wei J, Yao Y, Xu L, Zhou Z. Effect of polyethoxylated flavonoids (PMFs)-loaded citral and chitosan composite coatings on citrus preservation: From the perspective of fruit resistance. Food Chem X 2024; 22:101417. [PMID: 38736978 PMCID: PMC11088274 DOI: 10.1016/j.fochx.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Previous studies have shown that polymethoxylated flavonoids-loaded citral emulsion (PCT) can inhibit the growth and reproduction of Penicillium in citrus; however, PCT is difficult to apply to fruit preservation due to its high fluidity and volatility. Therefore, in this study, we combined PCT with chitosan (CS) to investigate the effect of a composite coating on citrus preservation. The results showed that compared to the control group, the CS-PCT group could effectively reduce the decay rate and maintain moisture availability, color difference, and hardness. Moreover, the contents of nonenzymatic antioxidants and volatile substances with antimicrobial activity were better preserved. In addition, the activities of related antioxidant enzymes were greater in the treatment group, and the expression of the corresponding enzyme-encoding genes was upregulated. Consequently, CS-PCT treatment could effectively maintain fruit quality and improve the resistance of citrus fruits during storage; moreover, it can be considered a nontoxic and efficient citrus preservative.
Collapse
Affiliation(s)
- Yurong Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Juanjuan Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Yijun Yao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| | - Li Xu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Beibei District, Chongqing 400715, China
| |
Collapse
|
2
|
Taher MA, Dawood DH, Selim MAE, Amin BH, Elsherbiny EA. Effect of Chitosan/Gum Arabic Blends Enriched by Sodium Nitroprusside or Methyl Salicylate on the Storability and Antioxidant Activity of Tomato Fruit. Polymers (Basel) 2024; 16:1518. [PMID: 38891464 PMCID: PMC11174673 DOI: 10.3390/polym16111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The impact of methyl salicylate (MeSA) or sodium nitroprusside (SNP) in chitosan (CS)/Gum Arabic (GA) mixture on physio-chemical characteristics and antioxidant status during the postharvest ripening of green tomato fruits was studied. CS/GA-MeSA at a 1 mM formulation was the best treatment to retard firmness and titratable acidity (TA) losses. Moreover, this formulation retarded pigmentation progress where it had the lowest significant values of total carotenes (TCs) and lycopene (LYP) contents until the 15th day of the storage period, as well as efficiently faced the rise in malondialdehyde (MDA) levels. Moreover, peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT), and phenylalanine ammonia-lyase (PAL) activities of tomatoes treated with CS/GA-SNP at 2 mM were significantly better than that of control in the primary stages of storage. CS/GA-SNP at a 2 mM formulation showed an extremely high significant content of total polyphenol (TP) in the early stage of storage, while CS/GA and CS/GA-MeSA at 1 and 2 mM accumulated higher significant TP contents than uncoated fruits at the late stage of storage. All formulations were characterized by FTIR spectroscopy. Furthermore, the polymer formulations exhibited strong antifungal activity against Alternaria alternata and Botrytis cinerea as major pathogens of postharvest tomatoes. Transmission electron microscope (TEM) observations for the mycelia of both fungi treated by CS/GA-MeSA at 2 mM revealed serious ultrastructural damage, including distortion of the cell wall and cell membrane and degradation of cytoplasmic organelles.
Collapse
Affiliation(s)
- Mohamed A. Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Dawood H. Dawood
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed A. E. Selim
- Agricultural Microbiology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Basma H. Amin
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt;
| | | |
Collapse
|
3
|
Khaliq G, Ali S, Ejaz S, Abdi G, Faqir Y, Ma J, Siddiqui MW, Ali A. γ-Aminobutyric acid is involved in overlapping pathways against chilling injury by modulating glutamate decarboxylase and defense responses in papaya fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1233477. [PMID: 38034576 PMCID: PMC10687426 DOI: 10.3389/fpls.2023.1233477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023]
Abstract
The effect of γ-aminobutyric acid (GABA) treatment at two concentrations (1 mM or 5 mM) on papaya fruit stored at 4°C and 80%-90% relative humidity for 5 weeks was investigated. The application of GABA at 5 mM apparently inhibited chilling injury, internal browning, electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide (H2O2), polyphenol oxidase (PPO), phospholipase D (PLD), and lipoxygenase (LOX) activities of papaya fruit. Fruit treated with 5 mM GABA enhanced the activities of ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutamate decarboxylase (GAD), and phenylalanine ammonia-lyase (PAL). In addition, GABA treatment significantly displayed higher levels of proline, endogenous GABA accumulation, phenolic contents, and total antioxidant activity than the nontreated papaya. The results suggested that GABA treatment may be a useful approach to improving the chilling tolerance of papaya fruit by reducing oxidative stress and enhancing the defense system.
Collapse
Affiliation(s)
- Ghulam Khaliq
- Department of Horticulture, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shaghef Ejaz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Yahya Faqir
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang, China
| | - Jiahua Ma
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Post-Harvest Technology, Bihar Agricultural University, Sabour, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
4
|
Ren Y, Yan T, Hu C, Liu D, He J. Exogenous Nitric Oxide-Induced Postharvest Gray Spot Disease Resistance in Loquat Fruit and Its Possible Mechanism of Action. Int J Mol Sci 2023; 24:ijms24054369. [PMID: 36901799 PMCID: PMC10001853 DOI: 10.3390/ijms24054369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The effectiveness of nitric oxide (NO) for control of grey spot rot cause by Pestalotiopsis eriobotryfolia in harvested loquat fruit and its probable mechanisms have been investigated. The results showed that NO donor sodium nitroprusside (SNP) did not evidently inhibit mycelial growth and spore germination of P. eriobotryfolia, but resulted in a low disease incidence and small lesion diameter. SNP resulted in a higher hydrogen peroxide (H2O2) level in the early stage after inoculation and a lower H2O2 level in the latter period by regulating the activities of superoxide dismutase, ascorbate peroxidase and catalase. At the same time, SNP enhanced the activities of chitinase, β-1,3-glucanase, phenylalanine ammonialyase, polyphenoloxidase, and total phenolic content in loquat fruit. However, SNP treatment inhibited the activities of cell wall-modifying enzymes and the modification of cell wall components. Our results suggested that NO treatment might have potential in reducing grey spot rot of postharvest loquat fruit.
Collapse
Affiliation(s)
- Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.R.); (J.H.)
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Chunmei Hu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dong Liu
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.R.); (J.H.)
| |
Collapse
|
5
|
Khaliq G, Ali S, Gapper N, Nicola S. Editorial: Recent advances and approaches in the application of elicitors to enhance resistance mechanisms in fresh produce. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
6
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
7
|
Li C, Yu W, Liao W. Role of Nitric Oxide in Postharvest Senescence of Fruits. Int J Mol Sci 2022; 23:ijms231710046. [PMID: 36077446 PMCID: PMC9456340 DOI: 10.3390/ijms231710046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO) acts as a gaseous signalling molecule and is considered to be a key regulator in the postharvest storage of fruits. Postharvest senescence is one of the most serious threats affecting the usage and economic value of fruits. Most recent studies have found that exogenous NO application can effectively improve the quality and prolong the shelf life of fruit postharvest by inhibiting postharvest diseases and alleviating chilling injury. Understanding the roles of NO is essential to elucidating how NO activates the appropriate set of responses to postharvest senescence. Here, we concluded that exogenous NO treatment alleviated senescence in postharvest fruit and attributed this to the following factors: (1) ethylene biosynthesis, (2) the antioxidant system, (3) polyamine metabolism and γ-aminobutyric acid (GABA) shunting, (4) cell wall metabolism, (5) sugar metabolism, (6) energy metabolism, (7) the CRT/DRE-binding factor (CBF) pathway and (8) S-nitrosylation. Moreover, crosstalk between NO and hydrogen sulfide (H2S), hydrogen peroxide (H2O2), oxalic acid (OA), arginine (Arg), GATA or plant hormone abscisic acid (ABA), melatonin (MT), and methyl jasmonate (MeJA), along with the regulation of key genes, were found to be very important in responses to postharvest senescence. In this study, we focus on the recent knowledge concerning the alleviative effect of NO on postharvest senescence, covering ethylene biosynthesis, the antioxidant system and related gene and protein expression.
Collapse
Affiliation(s)
- Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Yang R, Wang J, Cai Z, Shen Y, Gan Z, Duan B, Yuan J, Huang T, Zhang W, Du H, Wan C, Chen J, Zhu L. Transcriptome profiling to elucidate mechanisms of the enhancement of the resistance to Botryosphaeria dothidea by nitric oxide in postharvest kiwifruit during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|