1
|
Gao H, Sun J, Guo X, Zhang Z, Liu H, Zhang Z, Liu M, Zhou S, Li S, Zhang T. Study on the Extraction of Nervonic Acid from the Oil of Xanthoceras sorbifolium Bunge Seeds. Foods 2024; 13:2757. [PMID: 39272521 PMCID: PMC11394566 DOI: 10.3390/foods13172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Seven fatty acids were detected by GC-MS in Xanthoceras sorbifolium Bunge seed oil extracted at different temperatures, including Palmitic acid C16:0, Stearic acid C18:0, Oleic acid C18:1, Eicosenoic acid C20:1, Docosenoic acid C22:1, Tetracosenoic acid C24:1, and Linoleic acid C18:2. The highest content of nervonic acid (NA) was found in Xanthoceras sorbifolium Bunge seed oil extracted at 70 °C. Three methods were selected to analyze the extraction rate of nervonic acid in Xanthoceras sorbifolium Bunge seed oil, including urea complexation, low-temperature solvent crystallization, and a combined treatment using these two methods. The final content of nervonic acid obtained was 14.07%, 19.66%, and 40.17%, respectively. The combined treatment method increased the purity of nervonic acid in Xanthoceras sorbifolium Bunge seed oil by 12.62 times. Meanwhile, thermogravimetric behavior analysis of samples extracted using different methods was conducted by thermogravimetric analyzer, which suggested that the thermal stability of the samples extracted by the combined treatment was enhanced. These results can provide a new process parameter and scientific basis for the extraction of NA. At the same time, FTIR and NMR were also used to characterize the combined extraction sample, and the structure of the samples was proved.
Collapse
Affiliation(s)
- Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xuan Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Zhang D, Ye N, Li M, Dai G, Ma Y, Wang Y, Liu C, Ma H. Walnut green husk extract enhances the effect of chlorine dioxide on kernel quality and antioxidant properties of fresh-eating walnuts during their shelf life. Food Chem 2023; 428:136797. [PMID: 37418879 DOI: 10.1016/j.foodchem.2023.136797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Fresh-eating walnuts are perishable and become mildewed during shelf life, limiting their sales span. The effects of chlorine dioxide (ClO2) alone and its combination with walnut green husk extract (WGHE) on shelf stored fresh walnuts were investigated to develop a pollution-free preservative for the produce. The initial development of mildew incidence was delayed by both treatments under 25 °C, whereas, WGHE + ClO2 acted more effectively than ClO2 under 5 °C. The WGHE + ClO2 treatment presented superior effects on improving moisture, soluble sugar and total phenol content, alleviating loss of oil and unsaturated fatty acid and delaying peroxide value increase of walnut kernels at both temperatures. Both treatments inhibited the activities of three lipolytic enzymes and two oxidases at 25 °C and 5 °C, WGHE + ClO2 acted more effectively at 5 °C. The results guide the combined application of WGHE with ClO2 on shelf preservation of fresh walnut.
Collapse
Affiliation(s)
- Dongli Zhang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Niu Ye
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingrui Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoli Dai
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaobin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huiling Ma
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Sobolev AP, Ingallina C, Spano M, Di Matteo G, Mannina L. NMR-Based Approaches in the Study of Foods. Molecules 2022; 27:7906. [PMID: 36432006 PMCID: PMC9697393 DOI: 10.3390/molecules27227906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, the three different NMR-based approaches usually used to study foodstuffs are described, reporting specific examples. The first approach starts with the food of interest that can be investigated using different complementary NMR methodologies to obtain a comprehensive picture of food composition and structure; another approach starts with the specific problem related to a given food (frauds, safety, traceability, geographical and botanical origin, farming methods, food processing, maturation and ageing, etc.) that can be addressed by choosing the most suitable NMR methodology; finally, it is possible to start from a single NMR methodology, developing a broad range of applications to tackle common food-related challenges and different aspects related to foods.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Segre-Capitani”, Institute for Biological Systems, CNR, Via Salaria, Km 29.300, 00015 Monterotondo, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Hama JR, Fitzsimmons-Thoss V. Determination of Unsaturated Fatty Acids Composition in Walnut (Juglans regia L.) Oil Using NMR Spectroscopy. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02203-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Wang H, Asker K, Zhan C, Wang N. Transcriptomic and Metabolic Analysis of Fruit Development and Identification of Genes Involved in Raffinose and Hydrolysable Tannin Biosynthesis in Walnuts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8050-8062. [PMID: 34232042 DOI: 10.1021/acs.jafc.1c02434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Walnut (Juglans regia L.) is an important fruit tree with high nutrition in its nuts. Here, the development of walnut fruits was monitored, and nine biological samples at five developmental stages were collected and analyzed by transcriptomic and metabolic assays. Many phenolic metabolites accumulated in the peel of mature fruits, while lipids, carbohydrates, and amino acids and their derivatives mainly accumulated in the kernel. Fatty acid biosynthesis occurred at 13 weeks after pollination, and photosynthesis might occur in the exocarp of walnuts. By coexpression analysis of the transcriptome and metabolome, genes responsible for some metabolic pathways were predicted. Three genes encoding shikimate dehydrogenases (SDHs) that convert 3-dehydroshikimic acid to gallic acid (GA) and four genes encoding UDP-glycosyltransferase (UGT) that convert GA to β-glucogallin in the biosynthesis of hydrolysable tannins (HTs) were selected for functional confirmation. These three SDH genes were then expressed in Escherichia coli, and their recombinant proteins showed GA formation activity. Moreover, heterologous expression of the three SDH and four UGT genes in poplar hairy roots also showed a significant increase in GA and β-glucogallin accumulation, respectively. Taken together, we have provided an overview of walnut fruit development and uncovered genes involved in HT biosynthesis.
Collapse
Affiliation(s)
- Hua Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Keysarjan Asker
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Zhan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|