1
|
Al-Hassan A. Development and characterization of camel gelatin films: Influence of camel bone age and glycerol or sorbitol on film properties. Heliyon 2024; 10:e30338. [PMID: 38720712 PMCID: PMC11076969 DOI: 10.1016/j.heliyon.2024.e30338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
This study developed and evaluated camel bone gelatin films (CBGFs) with glycerol or sorbitol as plasticizers. Gelatin extracted from the bones of camels (Camelus dromedarius) at ages ranging from 2.5 to 7 years was used. A comprehensive analysis was conducted, evaluating a range of properties including thickness, moisture sorption capacity, water vapor permeability (WVP), infrared spectral characteristics, light absorption behavior, solubility, as well as mechanical and thermal attributes. This thorough examination allowed for a nuanced understanding of the diverse characteristics exhibited by the camel gelatin samples across different age groups. The results indicated that camel age, glycerol, and sorbitol had a significant impact on the properties of the film (P < 0.05). Tensile strength ranged from 0.32 MPa to 3.99 MPa, while the percentage of elongation at break varied from 89.42 % to 2.68 %. Film color (lightness, L) ranged from 21.39 to 41.33. Glycerol and sorbitol plasticized films were 100 % water soluble. Moisture sorption increased with temperature (25 °C, 35 °C, and 45 °C), with sorbitol films retaining less water. WVP was low in films from old camel bones and high in glycerol-plasticized CBGF-2.5Y and CBGF-4.5Y. Thermal analysis showed a melting temperature between 158.60 °C and 174.10 °C, depending on bone age and plasticizer. These films demonstrate promise for use in food packaging, coatings, and pharmaceutical applications.
Collapse
Affiliation(s)
- A.A. Al-Hassan
- Department of Food Science and Human Nutrition, College of Agriculture & Food, Qassim University, 51452, Burydah, Saudi Arabia
| |
Collapse
|
2
|
Athanasopoulou E, Bigi F, Maurizzi E, Karellou EIE, Pappas CS, Quartieri A, Tsironi T. Synthesis and characterization of polysaccharide- and protein-based edible films and application as packaging materials for fresh fish fillets. Sci Rep 2024; 14:517. [PMID: 38177403 PMCID: PMC10767132 DOI: 10.1038/s41598-024-51163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
The rising packaging industry together with global demand for sustainable production has increased the interest in developing biodegradable packaging materials. The aim of the study was to develop edible films based on pectin, gelatin, and hydroxypropyl methylcellulose and evaluate their applicability as biodegradable packaging materials for gilthead seabream fillets. Mechanical properties, water barriers, wettability of the films through contact angle measurement, optical, and UV-Vis barrier properties were evaluated for food packaging applications. The effective blend of polysaccharide and protein film-forming solutions was confirmed by the produced films with excellent optical properties, acceptable mechanical properties and adequate barriers to water vapor. The contact angle for pectin based and gelatin based films were higher than 90° indicating the hydrophobic films, while HPMC based films had contact angle lower than 90°. The produced films were tested as alternative and environmentally friendly packaging materials for gilthead seabream fillets during refrigerated storage. All tested packaging conditions resulted in similar shelf-life in packed gilthead seabream fillets (i.e. 7-8 days at 2 °C). The results showed that the developed films may reduce the use of conventional petroleum-based food packaging materials without affecting the shelf-life of fish.
Collapse
Affiliation(s)
- Evmorfia Athanasopoulou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Francesco Bigi
- Packtin, Via Del Chionso, 14/I, 42122, Reggio Emilia, RE, Italy
| | - Enrico Maurizzi
- Department of Life Science, University of Modena and Reggio Emilia, Via John Fitzgerald Kennedy 17/I, 42122, Reggio Emilia, RE, Italy
| | | | - Christos S Pappas
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | | | - Theofania Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| |
Collapse
|
3
|
Liew WC, Muhamad II, Chew JW, Karim KJA. Synergistic effect of graphene oxide/zinc oxide nanocomposites on polylactic acid-based active packaging film: Properties, release kinetics and antimicrobial efficiency. Int J Biol Macromol 2023; 253:127288. [PMID: 37813215 DOI: 10.1016/j.ijbiomac.2023.127288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties. A fixed 1.11 wt% GO and different ZnO concentrations were well dispersed in the PLA matrix. Increasing ZnO concentrations tended to increase agglomeration, as evident in rougher surfaces. Agglomeration inhibited water penetration, leading to a significant reduction in water permeability (46.3 %), moisture content (31.6 %) but an improvement in Young's Modulus (52.6 %). The overall and specific migration of GO/ZnO nanocomposites was found to be within acceptable limits. It is inferred that the release of Zn2+ ions followed pseudo-Fickian behavior with an initial burst effect. AM film with the highest concentration of ZnO (1.25 wt%) exhibited the highest inhibition rate against Escherichia coli (68.0 %), Bacillus cereus (66.5 %), Saccharomyces cerevisiae (70.9 %). Results suggest that GO/ZnO nanocomposites with optimal ZnO concentrations have the potential to serve as promising antimicrobial food packaging materials, offering enhanced barrier, antimicrobial properties and a controlled release system.
Collapse
Affiliation(s)
- Wen Ching Liew
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Ida Idayu Muhamad
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; IJN-UTM Cardioengineering Centre, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | |
Collapse
|
4
|
Karami A, Ghanbarzadeh B, Fakhri LA, Falcone PM, Hosseini M. Physico-Mechanical Optimization and Antimicrobial Properties of the Bionanocomposite Films Containing Gallic Acid and Zinc Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111769. [PMID: 37299672 DOI: 10.3390/nano13111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/12/2023]
Abstract
The mechanical and physical properties of the bionanocomposite films based on κ-carrageenan (KC)-gelatin (Ge) containing zinc oxide nanoparticles (ZnONPs) and gallic acid (GA) were optimized using the response surface method, and the optimum amounts of 11.19 wt% GA and 1.20 wt% ZnONPs were obtained. The results of XRD, SEM, and FT-IR tests showed the uniform distribution of the ZnONPs and GA in the film microstructure, and suitable interactions between biopolymers and these additives, which led to increasing the structural cohesion of the biopolymer matrix and improving the physical and mechanical properties of the KC-Ge-based bionanocomposite. In the films containing gallic acid and ZnONPs, an antimicrobial effect was not observed against E. coli; however, the GA-loaded and optimum films show an antimicrobial effect against S. aureus. The optimum film showed a higher inhibition effect against S. aureus compared to the ampicillin- and gentamicin-loaded discs.
Collapse
Affiliation(s)
- Azin Karami
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
- Department of Food Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Northern Cyprus, Turkey
| | - Leila Abolghasemi Fakhri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Pasquale M Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Para-Veterinary, Ilam University, Ilam P.O. Box 69315-516, Iran
| |
Collapse
|
5
|
Liu J, Wang Y, Liu Y, Shao S, Zheng X, Tang K. Synergistic effect of nano zinc oxide and tea tree essential oil on the properties of soluble soybean polysaccharide films. Int J Biol Macromol 2023; 239:124361. [PMID: 37028629 DOI: 10.1016/j.ijbiomac.2023.124361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Soluble soybean polysaccharide (SSPS)-based composite films with the addition of nano zinc oxide (nZnO, 5 wt% based on SSPS) and tea tree essential oil (TTEO, 10 wt% based on SSPS) were developed by the casting method. The effect of the combination of nZnO and TTEO on the microstructure and physical, mechanical and functional properties of SSPS films was evaluated. The results showed that the SSPS/TTEO/nZnO film exhibited enhanced water vapor barrier properties, thermal stability, water resistance, surface wettability, and total color difference, and almost completely prevented ultraviolet light transmission. The addition of TTEO and nZnO had no significant effect on the tensile strength and elongation at break of the films, but decreased the percentage of light transmittance of the films at 600 nm from 85.5 % to 10.1 %. The DPPH radical scavenging activity of the films significantly increased from 46.8 % (SSPS) to 67.7 % (SSPS/TTEO/nZnO) due to the presence of TTEO. Scanning electron microscopy analysis indicated that nZnO and TTEO were evenly dispersed in the SSPS matrix. The synergistic effect of nZnO and TTEO endowed the SSPS film with excellent antibacterial activity against E. coli and S. aureus, suggesting that the SSPS/TTEO/nZnO film could be a promising material for active packaging applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yiwei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yanchun Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Shuaiqi Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
6
|
Ylang-ylang (Cananga odorata) essential oils with flora odorants enhanced active function of biodegradable polyester films produced by extrusion. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Physicochemical and antimicrobial properties of biodegradable films based on gelatin/guar gum incorporated with grape seed oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Ebrahimi V, Mohammadi Nafchi A, Bolandi M, Baghaei H. Fabrication and characterization of a pH-sensitive indicator film by purple basil leaves extract to monitor the freshness of chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ding J, Wang M, Wu J, Li Q, Zhao Y, Li J, Sun T. Preservation properties of eugenol and its compound on seasoned Lateolabrax japonicus fillets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
The effect of polypropylene film containing nano-hydroxyapatite on Physicochemical and microbiological properties of button mushrooms (Agaricus bisporus) under Modified atmosphere packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Starch based bio-nanocomposite films reinforced with montmorillonite and lemongrass oil nanoemulsion: development, characterization and biodegradability. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
12
|
Lu M, Zhou Q, Yu H, Chen X, Yuan G. Colorimetric indicator based on chitosan/gelatin with nano-ZnO and black peanut seed coat anthocyanins for application in intelligent packaging. Food Res Int 2022; 160:111664. [DOI: 10.1016/j.foodres.2022.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
|
13
|
Puspasari V, Ridhova A, Hermawan A, Amal MI, Khan MM. ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst Eng 2022; 45:1421-1445. [PMID: 35608710 PMCID: PMC9127292 DOI: 10.1007/s00449-022-02733-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Rapid transmission of infectious microorganisms such as viruses and bacteria through person-to-person contact has contributed significantly to global health issues. The high survivability of these microorganisms on the material surface enumerates their transmissibility to the susceptible patient. The antimicrobial coating has emerged as one of the most interesting technologies to prevent growth and subsequently kill disease-causing microorganisms. It offers an effective solution a non-invasive, low-cost, easy-in-use, side-effect-free, and environmentally friendly method to prevent nosocomial infection. Among antimicrobial coating, zinc oxide (ZnO) stands as one of the excellent materials owing to zero toxicity, high biocompatibility to human organs, good stability, high abundancy, affordability, and high photocatalytic performance to kill various infectious pathogens. Therefore, this review provides the latest research progress on advanced applications of ZnO nanostructure-based antibacterial coatings for medical devices, biomedical applications, and health care facilities. Finally, future challenges and clinical practices of ZnO-based antibacterial coating are addressed.
Collapse
Affiliation(s)
- Vinda Puspasari
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Aga Ridhova
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency, South Tangerang, Banten, 15315, Indonesia
| | - Muhamad Ikhlasul Amal
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
14
|
Development and characterization of gelatin films derived from camel skin: effects of camel age and plasticizes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Effects of incorporation of Chavir ultrasound and maceration extracts on the antioxidant activity and oxidative stability of ordinary virgin olive oil: identification of volatile organic compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01462-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Noorian S, Nafchi AM, Bolandi M, Jokar M. Effects of Nano‐Titanium Dioxide and
Mentha piperita
Essential Oil on Physicochemical, Mechanical, and Optical Properties of Cassava Starch Film. STARCH-STARKE 2022. [DOI: 10.1002/star.202200090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simin Noorian
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch Islamic Azad University Damghan Iran
| | - Abdorreza Mohammadi Nafchi
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch Islamic Azad University Damghan Iran
- Food Technology Division, School of Industrial Technology Universiti Sains Malaysia Minden Penang 11800 Malaysia
| | - Marzieh Bolandi
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch Islamic Azad University Damghan Iran
| | - Maryam Jokar
- Research Group for Nano‐Bio Science, Division of Food Technology, National Food Institute Technical University of Denmark Lyngby Denmark
| |
Collapse
|
17
|
The effects of tannic and caffeic acid as cross-linking agents on the physicochemical, barrier, and mechanical characteristics of cold-water fish gelatin films. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01495-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Physico-chemical, biological properties of chitosan/gelatin-based films with Finger Millet bran extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Aboutalebzadeh S, Esmaeilzadeh-Kenari R, Jafarpour A. Nano-encapsulation of sweet basil essential oil based on native gums and its application in controlling the oxidative stability of Kilka fish oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Tymczewska A, Furtado BU, Nowaczyk J, Hrynkiewicz K, Szydłowska-Czerniak A. Functional Properties of Gelatin/Polyvinyl Alcohol Films Containing Black Cumin Cake Extract and Zinc Oxide Nanoparticles Produced via Casting Technique. Int J Mol Sci 2022; 23:2734. [PMID: 35269873 PMCID: PMC8911258 DOI: 10.3390/ijms23052734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to develop and characterize gelatin/polyvinyl alcohol (G/PVA) films loaded with black cumin cake extract (BCCE) and zinc oxide nanoparticles (ZnONPs). The BCCE was also applied for the green synthesis of ZnONPs with an average size of less than 100 nm. The active films were produced by a solvent-casting technique, and their physicochemical and antibacterial properties were investigated. Supplementation of G/PVA film in ZnONPs decreased the tensile strength (TS) from 2.97 MPa to 1.69 MPa. The addition of BCCE and ZnONPs increased the elongation at the break (EAB) of the enriched film by about 3%. The G/PVA/BCCE/ZnONPs film revealed the lowest water vapor permeability (WVP = 1.14 × 10-9 g·mm·Pa-1·h-1·mm-2) and the highest opacity (3.41 mm-1). The QUick, Easy, New, CHEap and Reproducible (QUENCHER) methodologies using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and cupric ion reducing antioxidant capacity (CUPRAC) were applied to measure antioxidant capacity (AC) of the prepared films. The incorporation of BCCE and ZnONPs into G/PVA films enhanced the AC by 8-144%. The films containing ZnONPs and a mixture of BCCE and ZnONPs inhibited the growth of three Gram-positive bacterial strains. These nanocomposite films with desired functional properties can be recommended to inhibit microbial spoilage and oxidative rancidity of packaged food.
Collapse
Affiliation(s)
- Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Bliss Ursula Furtado
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|