1
|
Guo H, Wu H, Kong X, Zhang N, Li H, Dong X, Li Z. Oat β-glucan ameliorates diabetes in high fat diet and streptozotocin-induced mice by regulating metabolites. J Nutr Biochem 2023; 113:109251. [PMID: 36513312 DOI: 10.1016/j.jnutbio.2022.109251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Oats are widely distributed worldwide and oat β-glucan has positive effects on human health. Particularly, oat β-glucan is reported to be beneficial in the management of type 2 diabetes. The aim of the present study is to investigate the effects of oat β-glucan and its possible underlying mechanisms on diabetes in type 2 diabetic mice that was induced by streptozotocin/high-fat diet (STZ/HFD). The data indicated that oat β-glucan significantly reduced the fasting blood glucose, improved glucose tolerance, and insulin sensitivity. The results further showed that oat β-glucan remarkably decreased the levels of total cholesterol (TCHO), total triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and free fatty acids. Moreover, oat β-glucan remarkably increased the hepatic glycogen content, but largely decreased the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in STZ/HFD-induced diabetic mice. Histological analysis showed that oat β-glucan alleviated visceral lesions. Finally, the metabolomic analysis indicated that the metabolic profile was remarkably changed after oat β-glucan intervention in diabetic mice. There were 88 and 106 differential metabolites screened as biomarkers in negative ion mode (NEG) and positive ion mode (POS) after oat β-glucan treatment, respectively. In addition, oat β-glucan significantly affected the serum metabolites of amino acids, organic acids and bile acids. Collectively, the current study elucidates oat β-glucan displays an effective nutritional intervention in diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Haili Wu
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Xiangqun Kong
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Nuonuo Zhang
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Hanqing Li
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhuoyu Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China.
| |
Collapse
|
2
|
Wu Y, Zhou A, Tang L, Lei Y, Tang B, Zhang L. Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes. J Diabetes Res 2020; 2020:6138438. [PMID: 32733968 PMCID: PMC7383344 DOI: 10.1155/2020/6138438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), characterized by insulin resistance and unclear pathogenesis, is a serious menace to human health. Bile acids are the end products of cholesterol catabolism and play an important role in maintaining cholesterol homeostasis. Furthermore, increasing studies suggest that bile acids may regulate glucose tolerance, insulin sensitivity, and energy metabolism, suggesting that bile acids may represent a potential therapeutic target for T2DM. This study summarizes the metabolism of bile acids and, more importantly, changes in their concentrations, constitution, and receptors in diabetes. Furthermore, we provide an overview of the mechanisms underlying the role of bile acids in glucose and lipid metabolism, as well as the occurrence and development of T2DM. Bile acid-targeted therapy may represent a valid approach for T2DM treatment.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510030, China
| | - An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Linjing Zhang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Antonellis PJ, Droz BA, Cosgrove R, O'Farrell LS, Coskun T, Perfield JW, Bauer S, Wade M, Chouinard TE, Brozinick JT, Adams AC, Samms RJ. The anti-obesity effect of FGF19 does not require UCP1-dependent thermogenesis. Mol Metab 2019; 30:131-139. [PMID: 31767164 PMCID: PMC6807368 DOI: 10.1016/j.molmet.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023] Open
Abstract
Objective Fibroblast growth factor 19 (FGF19) is a postprandial hormone which plays diverse roles in the regulation of bile acid, glucose, and lipid metabolism. Administration of FGF19 to obese/diabetic mice lowers body weight, improves insulin sensitivity, and enhances glycemic control. The primary target organ of FGF19 is the liver, where it regulates bile acid homeostasis in response to nutrient absorption. In contrast, the broader pharmacologic actions of FGF19 are proposed to be driven, in part, by the recruitment of the thermogenic protein uncoupling protein 1 (UCP1) in white and brown adipose tissue. However, the precise contribution of UCP1-dependent thermogenesis to the therapeutic actions of FGF19 has not been critically evaluated. Methods Using WT and germline UCP1 knockout mice, the primary objective of the current investigation was to determine the in vivo pharmacology of FGF19, focusing on its thermogenic and anti-obesity activity. Results We report that FGF19 induced mRNA expression of UCP1 in adipose tissue and show that this effect is required for FGF19 to increase caloric expenditure. However, we demonstrate that neither UCP1 induction nor an elevation in caloric expenditure are necessary for FGF19 to induce weight loss in obese mice. In contrast, the anti-obesity action of FGF19 appeared to be associated with its known physiological role. In mice treated with FGF19, there was a significant reduction in the mRNA expression of genes associated with hepatic bile acid synthesis enzymes, lowered levels of hepatic bile acid species, and a significant increase in fecal energy content, all indicative of reduced lipid absorption in animals treated with FGF19. Conclusion Taken together, we report that the anti-obesity effect of FGF19 occurs in the absence of UCP1. Our data suggest that the primary way in which exogenous FGF19 lowers body weight in mice may be through the inhibition of bile acid synthesis and subsequently a reduction of dietary lipid absorption. FGF19 increases UCP1 transcription in adipose tissue and is associated with significant weight loss. The increase in metabolic rate observed with FGF19 is dependent upon the presence of UCP1. In the absence of UCP1, the anti-obesity effect of FGF19 are associated with a greater reduction in energy absorption.
Collapse
Affiliation(s)
- Patrick J Antonellis
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Brian A Droz
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Richard Cosgrove
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Libbey S O'Farrell
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Tamer Coskun
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - James W Perfield
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Steven Bauer
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Mark Wade
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Tara E Chouinard
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Joseph T Brozinick
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrew C Adams
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ricardo J Samms
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|