1
|
Beniwal P, Toor AP. Functionalisation of lignin with urethane linkages and their strengthening effect on PLA composites. Int J Biol Macromol 2024; 258:129005. [PMID: 38159697 DOI: 10.1016/j.ijbiomac.2023.129005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Lignin was functionalised by crosslinking with hexamethylene diisocyanate (HDI) through the heterogenous reaction in the solvent dimethyl sulfoxide for preferential improvement in the mechanical properties of composites. The successful synthesis of lignin modified with HDI was confirmed by the instrumental analyses, e.g., FTIR, XPS, and FESEM. The incorporation of optimum crosslinked lignin in polylactic acid (PLA) matrix was systematically evaluated on the basis of their thermal stability, mechanical property, glass transition temperature (Tg), water contact angle, water absorption, and water permeability. The results displayed that incorporation of fillers had prominent effects on tensile tear strength, which could improve tensile strength up to 231 % and elongation at break up to 53 % due to the good interface compatibility between PLA and modified lignin. Further, with the inclusion of fillers, PLA composites exhibited higher crystallinity in comparison to neat PLA.
Collapse
Affiliation(s)
- Preeti Beniwal
- Dr SSB University Institute of Chemical Engineering and Technology, Panjab University, India
| | - Amrit Pal Toor
- Dr SSB University Institute of Chemical Engineering and Technology, Panjab University, India; Energy Research Centre, India.
| |
Collapse
|
2
|
Li H, Guo H, Luo Q, Wu DT, Zou L, Liu Y, Li HB, Gan RY. Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34702110 DOI: 10.1080/10408398.2021.1995843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tea, as a beverage, has been reputed for its health benefits and gained worldwide popularity. Tea polyphenols, especially catechins, as the main bioactive compounds in tea, exhibit diverse health benefits and have wide applications in the food industry. The development of tea polyphenol-incorporated products is dependent on the extraction, purification, and identification of tea polyphenols. Recent years, many green and novel extraction, purification, and identification techniques have been developed for the preparation of tea polyphenols. This review, therefore, introduces the classification of tea and summarizes the main conventional and novel techniques for the extraction of polyphenols from various tea products. The advantages and disadvantages of these techniques are also intensively discussed and compared. In addition, the purification and identification techniques are summarized. It is hoped that this updated review can provide a research basis for the green and efficient extraction, purification, and identification of tea polyphenols, which can facilitate their utilization in the production of various functional food products and nutraceuticals.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Qiong Luo
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Liu Y, Luo H, He Y. Studies on synthesis and characterization of waterborne polyurethane from epigallocatechin-3-gallate. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1642399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yang Liu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Haihang Luo
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Youjie He
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Purification of Polyphenols from Green Tea Leaves and Performance Prediction Using the Blend Hollow Fiber Ultrafiltration Membrane. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02262-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Mondal M, De S. Enrichment of (−) epigallocatechin gallate (EGCG) from aqueous extract of green tea leaves by hollow fiber microfiltration: Modeling of flux decline and identification of optimum operating conditions. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Guo Y, Guo Y, Xie Y, Cheng Y, Qian H, Yao W. Regeneration of tert-butylhydroquinone by tea polyphenols. Food Res Int 2017; 95:1-8. [PMID: 28395816 DOI: 10.1016/j.foodres.2017.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 01/24/2023]
Abstract
To study the antioxidant capacity (AC) regeneration of tert-butylhydroquinone (TBHQ) by tea polyphenols (TPs), a separable system has been designed for its evaluation. The AC values of three natural food matrices (liquorice, oat, and ginger) and TBHQ regenerated by TPs were all higher than their controls, and similar to the initial values (p<0.05). The average regeneration efficiency (RE) value was 1.49 for these three natural food matrices, and 0.82 for TBHQ. Electron paramagnetic resonance spectroscopy analysis has revealed the synergistic effect of TBHQ and TPs, which arose from the regeneration of TBHQ by TPs. The RE value of TBHQ regeneration by TPs embedded in a gelatine membrane was 0.51. The results demonstrated that TPs showed a capacity for regenerating TBHQ, indicating a potential application in regenerative packaging, whereby one antioxidant would be added to the food matrix, with another one as the regenerator incorporated into the packaging material.
Collapse
Affiliation(s)
- Yafang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Sousa LDS, Cabral BV, Madrona GS, Cardoso VL, Reis MHM. Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.05.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Preparative Purification of Epigallocatechin-3-gallate (EGCG) from Tea Polyphenols by Adsorption Column Chromatography. Chromatographia 2014. [DOI: 10.1007/s10337-014-2764-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Yang JS, Yang L. Preparation and application of cyclodextrin immobilized polysaccharides. J Mater Chem B 2013; 1:909-918. [DOI: 10.1039/c2tb00107a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|