1
|
Zheng Y, Du Y, Chen L, Mao W, Pu Y, Wang S, Wang D. Recent advances in shape memory polymeric nanocomposites for biomedical applications and beyond. Biomater Sci 2024; 12:2033-2040. [PMID: 38517138 DOI: 10.1039/d4bm00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Shape memory polymers (SMPs), which initiate shape transformation in response to environmental stimuli, have attracted significant attention in both academic research and technological innovation. The combination of functional nanomaterials and SMPs has led to the emergence of a variety of shape memory polymeric nanocomposites (SMPNs) with multifunctional properties. This has injected new vitality and vigor into fields such as tissue engineering, biomedicine, optical sensing, aerospace and mechanical engineering. In this review article, we present a brief introduction to the fundamentals of SMPs and SMPNs, followed by a discussion of the recent advances in their multifunctional applications in biomedical manufacturing, drug delivery devices, mechanical sensing, micro-engines, etc. The opportunities and challenges in the future development of SMPs are also discussed.
Collapse
Affiliation(s)
- Yifan Zheng
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yudi Du
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ling Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Wei Mao
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou 324000, China
| | - Yuan Pu
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Dan Wang
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Pongwisuthiruchte A, Aumnate C, Potiyaraj P. Tailoring of Silicone Urethane Methacrylate Resin for Vat Photopolymerization-Based 3D Printing of Shape Memory Polymers. ACS OMEGA 2024; 9:2884-2895. [PMID: 38250362 PMCID: PMC10795029 DOI: 10.1021/acsomega.3c08102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Polydimethylsiloxane (PDMS) or silicone elastomers have garnered considerable attention in the field of medical device applications due to their superior thermal stability. However, conventional manufacturing techniques for silicone elastomers suffer from drawbacks such as cost, lengthy production time, and inherent difficulties in fabricating complex structures. To address these limitations, photosensitive polydimethylsiloxane urethane methacrylate (PDMSUMA) oligomers were synthesized, and their curing behaviors were specifically investigated for vat photopolymerization 3D printing applications. The study focused on exploring the impact of weight ratios between poly(ethylene glycol) dimethacrylate (PEGDMA) and 2-hydroxyethyl methacrylate (HEMA) in the PDMSUMA resin formulation. The addition of PEGDMA as a reactive diluent was found to enhance the printability of the PDMSUMA resin and decrease its viscosity. Thermal, mechanical, and shape memory properties of the 3D-printed specimens were examined. Our findings demonstrate the potential of PDMSUMA resins for developing customizable shape memory materials with tailored properties.
Collapse
Affiliation(s)
- Aphiwat Pongwisuthiruchte
- Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok 10330, Thailand
| | - Chuanchom Aumnate
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranut Potiyaraj
- Department
of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Kantaros A, Ganetsos T, Petrescu FIT. Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics (Basel) 2024; 9:48. [PMID: 38248622 PMCID: PMC10813684 DOI: 10.3390/biomimetics9010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
In the field of three-dimensional object design and fabrication, this paper explores the transformative potential at the intersection of biomaterials, biopolymers, and additive manufacturing. Drawing inspiration from the intricate designs found in the natural world, this study contributes to the evolving landscape of manufacturing and design paradigms. Biomimicry, rooted in emulating nature's sophisticated solutions, serves as the foundational framework for developing materials endowed with remarkable characteristics, including adaptability, responsiveness, and self-transformation. These advanced engineered biomimetic materials, featuring attributes such as shape memory and self-healing properties, undergo rigorous synthesis and characterization procedures, with the overarching goal of seamless integration into the field of additive manufacturing. The resulting synergy between advanced manufacturing techniques and nature-inspired materials promises to revolutionize the production of objects capable of dynamic responses to environmental stimuli. Extending beyond the confines of laboratory experimentation, these self-transforming objects hold significant potential across diverse industries, showcasing innovative applications with profound implications for object design and fabrication. Through the reduction of waste generation, minimization of energy consumption, and the reduction of environmental footprint, the integration of biomaterials, biopolymers, and additive manufacturing signifies a pivotal step towards fostering ecologically conscious design and manufacturing practices. Within this context, inanimate three-dimensional objects will possess the ability to transcend their static nature and emerge as dynamic entities capable of evolution, self-repair, and adaptive responses in harmony with their surroundings. The confluence of biomimicry and additive manufacturing techniques establishes a seminal precedent for a profound reconfiguration of contemporary approaches to design, manufacturing, and ecological stewardship, thereby decisively shaping a more resilient and innovative global milieu.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Theodore Ganetsos
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Florian Ion Tiberiu Petrescu
- “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
4
|
Park S, Lee SJ, Park KM, Jung TG. Biomechanical and Biological Assessment of Polyglycelrolsebacate-Coupled Implant with Shape Memory Effect for Treating Osteoporotic Fractures. Bioengineering (Basel) 2023; 10:1413. [PMID: 38136004 PMCID: PMC10740735 DOI: 10.3390/bioengineering10121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Poly(glycerol sebacate) is a biocompatible elastomer that has gained increasing attention as a potential biomaterial for tissue engineering applications. In particular, PGS is capable of providing shape memory effects and allows for a free form, which can remember the original shape and obtain a temporary shape under melting point and then can recover its original shape at body temperature. Because these properties can easily produce customized shapes, PGS is being coupled with implants to offer improved fixation and maintenance of implants for fractures of osteoporosis bone. Herein, this study fabricated the OP implant with a PGS membrane and investigated the potential of this coupling. Material properties were characterized and compared with various PGS membranes to assess features such as control of curing temperature, curing time, and washing time. Based on the ISO 10993-5 standard, in vitro cell culture studies with C2C12 cells confirmed that the OP implant coupled with PGS membrane showed biocompatibility and biomechanical experiments indicated significantly increased pullout strength and maintenance. It is believed that this multifunctional OP implant will be useful for bone tissue engineering applications.
Collapse
Affiliation(s)
- Suzy Park
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| | - Su-Jeong Lee
- R&D Planning Team, Organoid Sciences Co., Ltd., 331, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Min Park
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| |
Collapse
|
5
|
Slobodinyuk D, Slobodinyuk A, Strelnikov V, Kiselkov D. Simple and Efficient Synthesis of Oligoetherdiamines: Hardeners of Epoxyurethane Oligomers for Obtaining Coatings with Shape Memory Effect. Polymers (Basel) 2023; 15:polym15112450. [PMID: 37299247 DOI: 10.3390/polym15112450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, new polymers with a shape memory effect for self-healing coatings based on oligomers with terminal epoxy groups, synthesized from oligotetramethylene oxide dioles of various molecular weights, were developed. For this purpose, a simple and efficient method for the synthesis of oligoetherdiamines with a high yield of the product, close to 94%, was developed. Oligodiol was treated with acrylic acid in the presence of a catalyst, followed by the reaction of the reaction product with aminoethylpiperazine. This synthetic route can easily be upscaled. The resulting products can be used as hardeners for oligomers with terminal epoxy groups synthesized from cyclic and cycloaliphatic diisocyanates. The effect of the molecular weight of newly synthesized diamines on the thermal and mechanical properties of urethane-containing polymers has been studied. Elastomers synthesized from isophorone diisocyanate showed excellent shape fixity and shape recovery ratios of >95% and >94%, respectively.
Collapse
Affiliation(s)
- Daria Slobodinyuk
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
| | - Alexey Slobodinyuk
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
- Department of Chemical Engineering, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Vladimir Strelnikov
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
| | - Dmitriy Kiselkov
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
- Department of Chemical Engineering, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| |
Collapse
|
6
|
Schönfeld D, Koss S, Vohl N, Friess F, Drescher D, Pretsch T. Dual Stimuli-Responsive Orthodontic Aligners: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3094. [PMID: 37109929 PMCID: PMC10145520 DOI: 10.3390/ma16083094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Aligner therapy for orthodontic tooth movement is gaining importance in orthodontics. The aim of this contribution is to introduce a thermo- and water-responsive shape memory polymer (SMP), which could lay the foundation for a new type of aligner therapy. The thermal, thermo-mechanical, and shape memory properties of thermoplastic polyurethane were studied by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and various practical experiments. The glass transition temperature of the SMP relevant for later switching was determined to be 50 °C in the DSC, while the tan δ peak was detected at 60 °C in the DMA. A biological evaluation was carried out using mouse fibroblast cells, which showed that the SMP is not cytotoxic in vitro. On a digitally designed and additively manufactured dental model, four aligners were fabricated from an injection-molded foil using a thermoforming process. The aligners were then heated and placed on a second denture model which had a malocclusion. After cooling, the aligners were in a programmed shape. The movement of a loose, artificial tooth and thus the correction of the malocclusion could be realized by thermal triggering the shape memory effect, at which the aligner corrected a displacement with an arc length of approximately 3.5 mm. The developed maximum force was separately determined to be about 1 N. Moreover, shape recovery of another aligner was realized within 20 h in 37 °C water. In perspective, the present approach can help to reduce the number of orthodontic aligners in therapy and thus avoid excessive material waste.
Collapse
Affiliation(s)
- Dennis Schönfeld
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Samantha Koss
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Nils Vohl
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Fabian Friess
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Dieter Drescher
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thorsten Pretsch
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Zende R, Ghase V, Jamdar V. A review on shape memory polymers. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rahul Zende
- Department of Polymer Science, S K Somaiya College, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai 400077, India
| | - Vaijayanti Ghase
- Department of Polymer Science, S K Somaiya College, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai 400077, India
| | - Vandana Jamdar
- Department of Polymer Science, S K Somaiya College, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai 400077, India
| |
Collapse
|
8
|
Xu X, Skelly JD, Song J. Chemically Crosslinked Amphiphilic Degradable Shape Memory Polymer Nanocomposites with Readily Tuned Physical, Mechanical, and Biological Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2693-2704. [PMID: 36607181 DOI: 10.1021/acsami.2c19441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Facile surgical delivery and stable fixation of synthetic scaffolds play roles just as critically as degradability and bioactivity in ensuring successful scaffold-guided tissue regeneration. Properly engineered shape memory polymers (SMPs) may meet these challenges. Polyhedral oligomeric silsesquioxanes (POSSs) can be covalently integrated with urethane-crosslinked polylactide (PLA) to give high-strength, degradable SMPs around physiological temperatures. To explore their potential for guided bone regeneration, here we tune their hydrophilicity, degradability, cytocompatibility, and osteoconductivity/osteoinductivity by crosslinking star-branched POSS-PLA with hydrophilic polyethylene glycol diisocyanates of different lengths and up to 60 wt % hydroxyapatite (HA). The composites exhibit high compliance, toughness, up to gigapascal storage moduli, and excellent shape recovery (>95%) at safe triggering temperatures. Water swelling ratios and hydrolytic degradation rates positively correlated with the hydrophilic crosslinker lengths, while the negative impact of degradation on the proliferation and osteogenesis of bone marrow stromal cells was mitigated with HA incorporation. Macroporous composites tailored for a rat femoral segmental defect were fabricated, and their ability to stably retain and sustainedly release recombinant osteogenic bone morphogenetic protein-2 and support cell attachment and osteogenesis was demonstrated. These properties combined make these amphiphilic osteoconductive degradable SMPs promising candidates as next-generation synthetic bone grafts.
Collapse
Affiliation(s)
- Xiaowen Xu
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jordan D Skelly
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
9
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications. Multifunctional bioactive citrate-based biomaterials have broad applications in regenerative medicine. Recent advances in multifunctional design and biomedical applications of citate-based polymers are summarized. Future challenge of citrate-based polymers in various biomedical applications are discussed.
Collapse
|
10
|
Chen X, Huang Z, Yang Q, Zeng X, Bai R, Wang L. 3D biodegradable shape changing composite scaffold with programmable porous structures for bone engineering. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/aca133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Abstract
This study developed a biodegradable composite porous polyurethane scaffold based on polycaprolactone and polyethylene glycol by sequential in-situ foaming salt leaching and freeze-drying process with responsive shape changing performance. Biomineral hydroxyapatite (HA) was introduced into the polyurethane matrix as inorganic fillers. Infrared spectroscopy results proved a successful synthesis, scanning electron microscopy showed that the scaffold’s porosity decreased with the addition of HA while the average pore size increased. X-ray diffraction and differential scanning calorimetry showed that the addition of HA lowered the melting point of the scaffold, resulting in a transition temperature close to the human body temperature. From the bending experiments, it could be demonstrated that PUHA20 has excellent shape memory performance with shape fixity ratio >98.9% and shape recovery ratio >96.2%. Interestingly, the shape-changing capacity could be influenced by the porous structures with variation of HA content. The shape recovery speed was further accelerated when the material was immersed in phosphate buffered saline at 37 °C. Additionally, in vitro mineralization experiments showed that the scaffold incorporating HA had good osteoconductivity, and implantation assessment proved that scaffolds had good in vivo biocompatibility. This scaffold is a promising candidate for implantation of bone defects.
Collapse
|
11
|
Shape Memory Polymers as Smart Materials: A Review. Polymers (Basel) 2022; 14:polym14173511. [PMID: 36080587 PMCID: PMC9460797 DOI: 10.3390/polym14173511] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Polymer smart materials are a broad class of polymeric materials that can change their shapes, mechanical responses, light transmissions, controlled releases, and other functional properties under external stimuli. A good understanding of the aspects controlling various types of shape memory phenomena in shape memory polymers (SMPs), such as polymer structure, stimulus effect and many others, is not only important for the preparation of new SMPs with improved performance, but is also useful for the optimization of the current ones to expand their application field. In the present era, simple understanding of the activation mechanisms, the polymer structure, the effect of the modification of the polymer structure on the activation process using fillers or solvents to develop new reliable SMPs with improved properties, long lifetime, fast response, and the ability to apply them under hard conditions in any environment, is considered to be an important topic. Moreover, good understanding of the activation mechanism of the two-way shape memory effect in SMPs for semi-crystalline polymers and liquid crystalline elastomers is the main key required for future investigations. In this article, the principles of the three basic types of external stimuli (heat, chemicals, light) and their key parameters that affect the efficiency of the SMPs are reviewed in addition to several prospective applications.
Collapse
|
12
|
Recent Developments in Shape Memory Elastomers for Biotechnology Applications. Polymers (Basel) 2022; 14:polym14163276. [PMID: 36015530 PMCID: PMC9415838 DOI: 10.3390/polym14163276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022] Open
Abstract
Shape memory elastomers have revolutionised the world since their introduction in the 20th century. The ability to tailor chemical structures to produce a family of materials in wide-ranging forms with versatile properties has propelled them to be ubiquitous. Recent challenges in the end-of-life management of polymeric materials should prompt us to ask, ‘what innovations in polymeric materials can make a strong case for their use as efficient materials?’ The development of smart elastomers that can acquire, convey, or process a stimulus (such as temperature, pressure, electromagnetic field, moisture, and chemical signals) and reply by creating a useful effect, specifically a reversible change in shape, is one such innovation. Here, we present a brief overview of shape memory elastomers (SMEs) and thereafter a review of recent advances in their development. We discuss the complex processing of structure-property relations and how they differ for a range of stimuli-responsive SMEs, self-healing SMEs, thermoplastic SMEs, and antibacterial and antifouling SMEs. Following innovations in SEMs, the SMEs are forecast to have significant potential in biotechnology based on their tailorable physical properties that are suited to a range of different external stimuli.
Collapse
|
13
|
Xiao X, Panahi-Sarmad M, Xu R, Wang A, Cao S, Zhang K, Kamkar M, Noroozi M. Aerogels with shape memory ability: Are they practical? —A mini-review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Costa DCS, Costa PC, Gomes MC, Chandrakar A, Wieringa PA, Moroni L, Mano JF. Universal Strategy for Designing Shape Memory Hydrogels. ACS MATERIALS LETTERS 2022; 4:701-706. [PMID: 36568348 PMCID: PMC9777886 DOI: 10.1021/acsmaterialslett.2c00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Smart polymeric biomaterials have been the focus of many recent biomedical studies, especially those with adaptability to defects and potential to be implanted in the human body. Herein we report a versatile and straightforward method to convert non-thermoresponsive hydrogels into thermoresponsive systems with shape memory ability. As a proof of concept, a thermoresponsive polyurethane mesh was embedded within a methacrylated chitosan (CHTMA), gelatin (GELMA), laminarin (LAMMA) or hyaluronic acid (HAMA) hydrogel network, which afforded hydrogel composites with shape memory ability. With this system, we achieved good to excellent shape fixity ratios (50-90%) and excellent shape recovery ratios (∼100%, almost instantaneously) at body temperature (37 °C). Cytocompatibility tests demonstrated good viability either with cells on top or encapsulated during all shape memory processes. This straightforward approach opens a broad range of possibilities to convey shape memory properties to virtually any synthetic or natural-based hydrogel for several biological and nonbiological applications.
Collapse
Affiliation(s)
- Dora C. S. Costa
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia
D. C. Costa
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria C. Gomes
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amit Chandrakar
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Department
of Complex Tissue Regeneration, Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Paul A. Wieringa
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Department
of Complex Tissue Regeneration, Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Department
of Complex Tissue Regeneration, Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - João F. Mano
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Mat Saad N, Mohd Salleh N, Abdullah TK, Ahmad Zubir S. Influence of prepolymer reaction time in the fabrication of palm kernel oil polyol based shape memory polyurethane. J Appl Polym Sci 2021. [DOI: 10.1002/app.52109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Norshahli Mat Saad
- School of Materials and Mineral Resources Engineering Engineering Campus, Universiti Sains Malaysia Penang Malaysia
| | - Norliyana Mohd Salleh
- Centre for Herbal Standardization, Universiti Sains Malaysia Sains@USM 11900 Bayan Lepas Malaysia
| | - Tuti Katrina Abdullah
- School of Materials and Mineral Resources Engineering Engineering Campus, Universiti Sains Malaysia Penang Malaysia
| | - Syazana Ahmad Zubir
- School of Materials and Mineral Resources Engineering Engineering Campus, Universiti Sains Malaysia Penang Malaysia
| |
Collapse
|
16
|
Peixoto C, Zille A, Ferreira da Silva A, Carneiro OS. Shape memory polymers as actuators: Characterization of the relevant parameters under constrained recovery. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carina Peixoto
- IPC—Institute for Polymers and Composites University of Minho Guimarães Portugal
| | - Andrea Zille
- 2C2T—Center for Science and Textile Technology University of Minho Guimarães Portugal
| | | | - Olga Sousa Carneiro
- IPC—Institute for Polymers and Composites University of Minho Guimarães Portugal
| |
Collapse
|
17
|
Quadrini F, Bellisario D, Iorio L, Santo L, Pappas P, Koutroumanis N, Anagnostopoulos G, Galiotis C. Shape Memory Composite Sandwich Structures with Self-Healing Properties. Polymers (Basel) 2021; 13:polym13183056. [PMID: 34577957 PMCID: PMC8470463 DOI: 10.3390/polym13183056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, Polyurea/Formaldehyde (PUF) microcapsules containing Dicyclopentadiene (DCPD) as a healing substance were fabricated in situ and mixed at relatively low concentrations (<2 wt%) with a thermosetting polyurethane (PU) foam used in turn as the core of a sandwich structure. The shape memory (SM) effect depended on the combination of the behavior of the PU foam core and the shape memory polymer composite (SMPC) laminate skins. SMPC laminates were manufactured by moulding commercial carbon fiber-reinforced (CFR) prepregs with a SM polymer interlayer. At first, PU foam samples, with and without microcapsules, were mechanically tested. After, PU foam was inserted into the SMPC sandwich structure. Damage tests were carried out by compression and bending to deform and break the PU foam cells, and then assess the structure self-healing (SH) and recovery capabilities. Both SM and SH responses were rapid and thermally activated (120 °C). The CFR-SMPC skins and the PU foam core enable the sandwich to exhibit excellent SM properties with a shape recovery ratio up to 99% (initial configuration recovery). Moreover, the integration of microcapsules (0.5 wt%) enables SH functionality with a structural restoration up to 98%. This simple process makes this sandwich structure ideal for different industrial applications.
Collapse
Affiliation(s)
- Fabrizio Quadrini
- Department of Industrial Engineering, University of Rome ‘Tor Vergata’, Via del Politecnico 1, 00133 Rome, Italy; (L.I.); (L.S.)
- Correspondence: (F.Q.); (D.B.); Tel.: +39-0672597167 (F.Q.)
| | - Denise Bellisario
- Department of Industrial Engineering, University of Rome ‘Tor Vergata’, Via del Politecnico 1, 00133 Rome, Italy; (L.I.); (L.S.)
- Correspondence: (F.Q.); (D.B.); Tel.: +39-0672597167 (F.Q.)
| | - Leandro Iorio
- Department of Industrial Engineering, University of Rome ‘Tor Vergata’, Via del Politecnico 1, 00133 Rome, Italy; (L.I.); (L.S.)
| | - Loredana Santo
- Department of Industrial Engineering, University of Rome ‘Tor Vergata’, Via del Politecnico 1, 00133 Rome, Italy; (L.I.); (L.S.)
| | - Panagiotis Pappas
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, University of Patras, Stadiou Str., Rio, GR 26504 Patras, Greece; (P.P.); (N.K.); (G.A.); (C.G.)
| | - Nikolaos Koutroumanis
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, University of Patras, Stadiou Str., Rio, GR 26504 Patras, Greece; (P.P.); (N.K.); (G.A.); (C.G.)
- Department of Chemical Engineering, University of Patras, University Campus, GR 26504 Patras, Greece
| | - George Anagnostopoulos
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, University of Patras, Stadiou Str., Rio, GR 26504 Patras, Greece; (P.P.); (N.K.); (G.A.); (C.G.)
| | - Costas Galiotis
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, University of Patras, Stadiou Str., Rio, GR 26504 Patras, Greece; (P.P.); (N.K.); (G.A.); (C.G.)
- Department of Chemical Engineering, University of Patras, University Campus, GR 26504 Patras, Greece
| |
Collapse
|
18
|
Abstract
Smart scaffolds based on shape memory polymer (SMPs) have been increasingly studied in tissue engineering. The unique shape actuating ability of SMP scaffolds has been utilized to improve delivery and/or tissue defect filling. In this regard, these scaffolds may be self-deploying, self-expanding, or self-fitting. Smart scaffolds are generally thermoresponsive or hydroresponsive wherein shape recovery is driven by an increase in temperature or by hydration, respectively. Most smart scaffolds have been directed towards regenerating bone, cartilage, and cardiovascular tissues. A vast variety of smart scaffolds can be prepared with properties targeted for a specific tissue application. This breadth of smart scaffolds stems from the variety of compositions employed as well as the numerous methods used to fabricated scaffolds with the desired morphology. Smart scaffold compositions span across several distinct classes of SMPs, affording further tunability of properties using numerous approaches. Specifically, these SMPs include those based on physically cross-linked and chemically cross-linked networks and include widely studied shape memory polyurethanes (SMPUs). Various additives, ranging from nanoparticles to biologicals, have also been included to impart unique functionality to smart scaffolds. Thus, given their unique functionality and breadth of tunable properties, smart scaffolds have tremendous potential in tissue engineering.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Alauzen T, Ross S, Madbouly S. Biodegradable shape-memory polymers and composites. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymers have recently been making media headlines in various negative ways. To combat the negative view of those with no polymer experience, sustainable and biodegradable materials are constantly being researched. Shape-memory polymers, also known as SMPs, are a type of polymer material that is being extensively researched in the polymer industry. These SMPs can exhibit a change in shape because of an external stimulus. SMPs that are biodegradable or biocompatible are used extensively in medical applications. The use of biodegradable SMPs in the medical field has also led to research of the material in other applications. The following categories used to describe SMPs are discussed: net points, composition, stimulus, and shape-memory function. The addition of fillers or additives to the polymer matrix makes the SMP a polymer composite. Currently, biodegradable fillers are at the forefront of research because of the demand for sustainability. Common biodegradable fillers or fibers used in polymer composites are discussed in this chapter including Cordenka, hemp, and flax. Some other nonbiodegradable fillers commonly used in polymer composites are evaluated including clay, carbon nanotubes, bioactive glass, and Kevlar. The polymer and filler phase differences will be evaluated in this chapter. The recent advances in biodegradable shape-memory polymers and composites will provide a more positive perspective of the polymer industry and help to attain a more sustainable future.
Collapse
Affiliation(s)
- Tanner Alauzen
- Plastics Engineering Technology , Penn State Behrend , Erie , USA
| | - Shaelyn Ross
- Plastics Engineering Technology , Penn State Behrend , Erie , USA
| | - Samy Madbouly
- Plastics Engineering Technology , Penn State Behrend , Erie , USA
| |
Collapse
|
20
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
21
|
Shakibania S, Ghazanfari L, Raeeszadeh-Sarmazdeh M, Khakbiz M. Medical application of biomimetic 4D printing. Drug Dev Ind Pharm 2021; 47:521-534. [PMID: 33307855 DOI: 10.1080/03639045.2020.1862179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Additive manufacturing has attracted a lot of attention in fabrication of bio medical devices and structures in recent years. 4D printing, a new class of 3D printing where time is considered as a 4th dimension, allows us to build biological structures such as scaffolds, implants, and stents with dynamic performance mimicking the body's natural tissues. In order to properly exploit the capabilities of this fabrication method, understanding and exploiting the shape memory materials is critical. These 'smart' materials are responsive to the external stimuli which eliminates the need for utilizing the sensors, and batteries. These stimuli-triggered 'smart' materials possess a dynamic behavior unlike the static scaffolds based on conventional manufacturing techniques. In this review, recent advances on application of 4D printing for manufacturing of this type of materials and other high-performance biomaterials for medical applications have been discussed.
Collapse
Affiliation(s)
- Sara Shakibania
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Lida Ghazanfari
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, USA
| | | | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Karasu F, Weder C. Blends of poly(ester urethane)s and polyesters as a general design approach for triple‐shape memory polymers. J Appl Polym Sci 2021. [DOI: 10.1002/app.49935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Feyza Karasu
- Adolphe Merkle Institute University of Fribourg Fribourg Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute University of Fribourg Fribourg Switzerland
| |
Collapse
|
23
|
Fu CY, Chuang WT, Hsu SH. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9702-9713. [PMID: 33600161 DOI: 10.1021/acsami.0c21940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryogels are matrices that are formed in moderately frozen solutions of monomeric or polymeric precursors. They have the advantages of interconnected macropores, structural stability, and compressibility. Meanwhile, thermally induced shape memory is an attractive feature of certain functional materials. Although there have been several studies concerning shape-memory cryogels, little work has been conducted on shape-memory cryogels with biodegradability. In this study, a water-based biodegradable difunctional polyurethane with a shape-memory property was synthesized and used as the nanoparticulate crosslinker to react with chitosan to form a shape-memory cryogel. The thermally induced shape-memory mechanism was clarified using in situ wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) during the shape-memory process. The in situ WAXS showed the changes of crystallinity in the crosslinker and the cryogel during the shape fixation and recovery processes. The in situ SAXS revealed the orientation of crystallinity of the crosslinker and the cryogel as the mechanism for shape memory. The strip-shape cryogel was deformed at 50 °C to U-shape and fixed at - 20 °C, which was squeezable at 25 °C and returned to the strip-shape at 50 °C in air. The shape recovery was further tested in water at two different temperatures. The injected cryogel recovered the U-shape in 4 °C water, representing elastic recovery, and transformed to a long strip in 37 °C water, representing the switchable shape memory. Moreover, the shape-memory cryogel sheet with a large dimension (10 mm × 10 mm × 1.1 mm cryogel sheet) or with complex structures (N, T, and U shapes) could be fixed as a rod, injected through a 16 G needle, and return to its original shape in 37 °C water, all of which could not be achieved by the conventional cryogel. Human mesenchymal stem cells grown in the shape-memory cryogel scaffolds displayed long-term proliferation and chondrogenic potential. Their unique injectability and cytocompatibility suggested potential applications of shape-memory cryogels as injectable and expandable templates for tissue engineering and minimally invasive surgery.
Collapse
Affiliation(s)
- Chih-Yu Fu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei Taiwan 10617, Republic of China
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei Taiwan 10617, Republic of China
| |
Collapse
|
24
|
A Mechanical Analysis of Chemically Stimulated Linear Shape Memory Polymer Actuation. MATERIALS 2021; 14:ma14030481. [PMID: 33498441 PMCID: PMC7864201 DOI: 10.3390/ma14030481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
In the present work, we study the role of programming strain (50% and 100%), end loads (0, 0.5, 1.0, and 1.5 MPa), and chemical environments (acetone, ethanol, and water) on the exploitable stroke of linear shape memory polymer (SMP) actuators made from ESTANE ETE 75DT3 (SMP‑E). Dynamic mechanical thermal analysis (DMTA) shows how the uptake of solvents results in a decrease in the glass temperature of the molecular switch component of SMP-E. A novel in situ technique allows chemically studying triggered shape recovery as a function of time. It is found that the velocity of actuation decreases in the order acetone > ethanol > water, while the exploitable strokes shows the inverse tendency and increases in the order water > ethanol > acetone. The results are interpreted on the basis of the underlying chemical (how solvents affect thermophysical properties) and micromechanical processes (the phenomenological spring dashpot model of Lethersich type rationalizes the behavior). The study provides initial data which can be used for micromechanical modeling of chemically triggered actuation of SMPs. The results are discussed in the light of underlying chemical and mechanical elementary processes, and areas in need of further work are highlighted.
Collapse
|
25
|
Haskew MJ, Hardy JG. A Mini-Review of Shape-Memory Polymer-Based Materials : Stimuli-responsive shape-memory polymers. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651319x15754757916993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shape-memory polymers (SMPs) enable the production of stimuli-responsive polymer-based materials with the ability to undergo a large recoverable deformation upon the application of an external stimulus. Academic and industrial research interest in the shape-memory effects (SMEs) of
these SMP-based materials is growing for task-specific applications. This mini-review covers interesting aspects of SMP-based materials, their properties, how they may be investigated and highlights examples of the potential applications of these materials.
Collapse
Affiliation(s)
- Mathew J. Haskew
- Department of Chemistry and Materials Science Institute, Faraday Building, Lancaster University Lancaster, LA1 4YB UK
| | - John G. Hardy
- Department of Chemistry and Materials Science Institute, Faraday Building, Lancaster University Lancaster, LA1 4YB UK
| |
Collapse
|
26
|
Stiller AM, Usoro JO, Lawson J, Araya B, González-González MA, Danda VR, Voit WE, Black BJ, Pancrazio JJ. Mechanically Robust, Softening Shape Memory Polymer Probes for Intracortical Recording. MICROMACHINES 2020; 11:E619. [PMID: 32630553 PMCID: PMC7344527 DOI: 10.3390/mi11060619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
While intracortical microelectrode arrays (MEAs) may be useful in a variety of basic and clinical scenarios, their implementation is hindered by a variety of factors, many of which are related to the stiff material composition of the device. MEAs are often fabricated from high modulus materials such as silicon, leaving devices vulnerable to brittle fracture and thus complicating device fabrication and handling. For this reason, polymer-based devices are being heavily investigated; however, their implementation is often difficult due to mechanical instability that requires insertion aids during implantation. In this study, we design and fabricate intracortical MEAs from a shape memory polymer (SMP) substrate that remains stiff at room temperature but softens to 20 MPa after implantation, therefore allowing the device to be implanted without aids. We demonstrate chronic recordings and electrochemical measurements for 16 weeks in rat cortex and show that the devices are robust to physical deformation, therefore making them advantageous for surgical implementation.
Collapse
Affiliation(s)
- Allison M. Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Joshua O. Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Jennifer Lawson
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Betsiti Araya
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | | | | | - Walter E. Voit
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
- Qualia, Inc., Dallas, TX 75252, USA;
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Bryan J. Black
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| |
Collapse
|
27
|
Pandey A, Singh G, Singh S, Jha K, Prakash C. 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings. J Mech Behav Biomed Mater 2020; 108:103781. [PMID: 32469714 DOI: 10.1016/j.jmbbm.2020.103781] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/23/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Shape memory polymers (SMPs) and their composites have become the prominent choice of the various industries owing to the unique inherent characteristics which can be stimulated through the exposure of external stimuli. The use of SMPs in the three-dimensional (3D) technologies has produced enormous advantages. However, the potential of SMPs in 3D printing has limitedly explored. In the present study, an investigation was performed to study the shape memory effect (SME) of the fused filament fabricated (FFF) chitosan (CS) reinforced poly-lactic-acid (PLA) based porous scaffolds. Firstly, the composite filaments, with 1, 1.5, and 2% wt. of CS, were fabricated by using the twin-screw extrusion process, which was later used to print the test specimens at different infill density. The printed samples were selectively pre-elongated to 2.5 mm and then processed through direct heating, at 60-70 °C, for enabling the SME. It has been observed that the CS particles acted as rigid phases and interrupted the re-ordering of PLA chain. However, the scaffoldings showed 18.8% shape recovery at optimized process parametric settings. In addition, wettability and biocompatibility analyses of developed scaffoldings have also been performed to investigate the biological aspects of the developed scaffoldings. The stimulated samples found to be possessed with good wettability and cell proliferation. Overall, the 3D printed PLA/CS porous scaffoldings have shown significant shape recovery characteristics and are biologically active to be used as self-healing implants for acute bone deficiencies.
Collapse
Affiliation(s)
- Akash Pandey
- School of Mechanical Engineering, Lovely Professional University, Phagwara, India.
| | | | - Sunpreet Singh
- School of Mechanical Engineering, Lovely Professional University, Phagwara, India; Mechanical Engineering, National University of Singapore, Singapore.
| | - Kanishak Jha
- School of Mechanical Engineering, Lovely Professional University, Phagwara, India
| | - Chander Prakash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, India
| |
Collapse
|
28
|
Bil M, Kijeńska-Gawrońska E, Głodkowska-Mrówka E, Manda-Handzlik A, Mrówka P. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110675. [PMID: 32204102 DOI: 10.1016/j.msec.2020.110675] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Integration of multiple features including shape memory, biodegradation, and sustained drug delivery in a single material offers the opportunity to significantly improve the abilities of implantable devices for cardiovascular system regeneration. Two types of shape memory polyurethanes (SMPUs): PU-PLGA and PU-PLLA/PEG differing in soft segments composition that comprising blends of various biodegradable polyols, i.e. D,l-lactide-co-glycolide diol (o-PLGA), poly(e-caprolactone) diols (o-PCL) with various molecular weights, poly-l-lactide diol (o-PLLA), polyethylene glycol (o-PEG) were synthesized and further utilized to electrospun nanofibrous - rapamycin (Rap) delivery system. Structure characterization by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DCS) and hydrophilicity measurements were performed to gain more insights on the influence of the particular units of the softs segments on the transition temperature (Ttrans), shape recovery, degradation profile, and drug release kinetics. In vitro study in PBS solution revealed that incorporation of o-PLGA segments to SMPUs is favorable over o-PEG as increased shape memory performance was observed. Moreover, presence of PLGA in PU-PLGA gave more predictable degradation profile in comparison to PU-PLLA/PEG system. Human Cardiac Fibroblasts (HCF) viability tests in vitro confirmed that the amount of Rap released from evaluated PU-PLLA/PEG/Rap and PU-PLGA/Rap drug delivery systems was sufficient to inhibit cells growth on the surface of the tested materials.
Collapse
Affiliation(s)
- Monika Bil
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02-507 Warsaw, Poland.
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02-507 Warsaw, Poland
| | - Eliza Głodkowska-Mrówka
- Department of Experimental Hematology, Department of Laboratory Medicine, Institute of Hematology and Transfusion Medicine, 5 Indiry Gandhi Str, 02-776 Warsaw, Poland
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63A Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Piotr Mrówka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland
| |
Collapse
|
29
|
Goldmann AS, Boase NRB, Michalek L, Blinco JP, Welle A, Barner-Kowollik C. Adaptable and Reprogrammable Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902665. [PMID: 31414512 DOI: 10.1002/adma.201902665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control. A critical literature assessment reveals that methodologies for writing and erasing substrates exist, yet are still far from reaching their full potential. It is thus critical to assess the current status and to identify avenues to overcome the existing limitations. Herein, the current state-of-the-art in the field of reversible chemistry on surfaces is surveyed, while concomitantly identifying the challenges-not only synthetic but also in current surface characterization methods. The potential within reversible chemistry on surfaces to function as true writeable memories devices is identified, and the latest developments in readout technologies are discussed. Finally, we explore how spatial and temporal control over reversible, light-induced chemistries has the potential to drive the future of functional interface design, especially when combined with powerful laser lithographic applications.
Collapse
Affiliation(s)
- Anja S Goldmann
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Lukas Michalek
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Alexander Welle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
30
|
Marycz K, Alicka M, Kornicka-Garbowska K, Polnar J, Lis-Bartos A, Wiglusz RJ, Roecken M, Nedelec JM. Promotion through external magnetic field of osteogenic differentiation potential in adipose-derived mesenchymal stem cells: Design of polyurethane/poly(lactic) acid sponges doped with iron oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2019; 108:1398-1411. [PMID: 31513334 DOI: 10.1002/jbm.b.34488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022]
Abstract
Recently, iron oxide nanoparticles (IONPs) have gathered special attention in regenerative medicine. Owing to their magnetic and bioactive properties, IONPs are utilized in the fabrication of novel biomaterials. Yet, there was no report regarding thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) polymer doped with IONPs on osteogenic differentiation of mesenchymal stem cells. Thus the objectives of presented study was to: (a) fabricate magnetic TPU + PLA sponges doped with iron (III) oxide Fe2 O3 nanoparticles; (b) investigate the effects of biomaterial and its exposition to static magnetic field (MF) on osteogenic differentiation, proliferation, and apoptosis in adipose-derived mesenchymal stem cells (ASCs). TPU + PLA sponges were prepared using solvent casting technique while incorporation of the Fe2 O3 nanoparticles was performed with solution cast method. RT-PCR was applied to evaluate expression of osteogenic-related genes and integrin's in cells cultured on fabricated materials with or without the stimulation of static MF. MF stimulation enhanced the expression of osteopontin and collagen type I while decreased expression of bone morphogenetic protein 2 in tested magnetic materials-TPU + PLA/1% Fe2 O3 and TPU + PLA/5% Fe2 O3 . Therefore, TPU + PLA sponges doped with IONPs and exposure to MF resulted in improved osteogenic differentiation of ASC.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, Gießen, Germany
| | - Michalina Alicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Joanna Polnar
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH University of Science and Technology, Krakow, Poland
| | - Anna Lis-Bartos
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Science and Technology, Krakow, Poland
| | - Rafał J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland
| | - Michael Roecken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, Gießen, Germany
| | - Jean-Marie Nedelec
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France
| |
Collapse
|
31
|
Liu H, Mohsin N, Kim S, Chung H. Lignin, a biomass crosslinker, in a shape memory polycaprolactone network. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hailing Liu
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Nuverah Mohsin
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Sundol Kim
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Hoyong Chung
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| |
Collapse
|
32
|
|
33
|
Xiao M, Zhang N, Zhuang J, Sun Y, Ren F, Zhang W, Hou Z. Degradable Poly(ether-ester-urethane)s Based on Well-Defined Aliphatic Diurethane Diisocyanate with Excellent Shape Recovery Properties at Body Temperature for Biomedical Application. Polymers (Basel) 2019; 11:E1002. [PMID: 31195671 PMCID: PMC6631253 DOI: 10.3390/polym11061002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is to offer a new class of degradable shape-memory poly(ether-ester-urethane)s (SMPEEUs) based on poly(ether-ester) (PECL) and well-defined aliphatic diurethane diisocyanate (HBH) for further biomedical application. The prepolymers of PECLs were synthesized through bulk ring-opening polymerization using ε-caprolactone as the monomer and poly(ethylene glycol) as the initiator. By chain extension of PECL with HBH, SMPEEUs with varying PEG content were prepared. The chemical structures of the prepolymers and products were characterized by GPC, 1H NMR, and FT-IR, and the effect of PEG content on the physicochemical properties (especially the shape recovery properties) of SMPEEUs was studied. The microsphase-separated structures of the SMPEEUs were demonstrated by DSC and XRD. The SMPEEU films exhibited good tensile properties with the strain at a break of 483%-956% and an ultimate stress of 23.1-9.0 MPa. Hydrolytic degradation in vitro studies indicated that the time of the SMPEEU films becoming fragments was 4-12 weeks and the introduction of PEG facilitates the degradation rate of the films. The shape memory properties studies found that SMPEEU films with a PEG content of 23.4 wt % displayed excellent recovery properties with a recovery ratio of 99.8% and a recovery time of 3.9 s at body temperature. In addition, the relative growth rates of the SMPEEU films were greater than 75% after incubation for 72 h, indicating good cytocompatibility in vitro. The SMPEEUs, which possess not only satisfactory tensile properties, degradability, nontoxic degradation products, and cytocompatibility, but also excellent shape recovery properties at body temperature, promised to be an excellent candidate for medical device applications.
Collapse
Affiliation(s)
- Minghui Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Na Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Jie Zhuang
- Shandong Academy of Pharmaceutical Sciences, Shandong Provincial Key Laboratory of Biomedical Polymer, Jinan 250101, China.
| | - Yuchen Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Fang Ren
- Success Bio-tech Co., Ltd., Jinan 250101, China.
| | - Wenwen Zhang
- Success Bio-tech Co., Ltd., Jinan 250101, China.
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
34
|
Additive Manufacturing of Information Carriers Based on Shape Memory Polyester Urethane. Polymers (Basel) 2019; 11:polym11061005. [PMID: 31195726 PMCID: PMC6631516 DOI: 10.3390/polym11061005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/24/2022] Open
Abstract
Shape memory polymers (SMPs) are stimuli-responsive materials, which are able to retain an imposed, temporary shape and recover the initial, permanent shape through an external stimulus like heat. In this work, a novel manufacturing method is introduced for thermoresponsive quick response (QR) code carriers, which originally were developed as anticounterfeiting technology. Motivated by the fact that earlier manufacturing processes were sometimes too time-consuming for production, filaments of a polyester urethane (PEU) with and without dye were extruded and processed into QR code carriers using fused filament fabrication (FFF). Once programmed, the distinct shape memory properties enabled a heating-initiated switching from non-decodable to machine-readable QR codes. The results demonstrate that FFF constitutes a promising additive manufacturing technology to create complex, filigree structures with adjustable horizontal and vertical print resolution and, thus, an excellent basis to realize further technically demanding application concepts for shape memory polymers.
Collapse
|
35
|
Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics. Polymers (Basel) 2019; 11:polym11050902. [PMID: 31108911 PMCID: PMC6571767 DOI: 10.3390/polym11050902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023] Open
Abstract
Thiol-ene/acrylate-based shape memory polymers (SMPs) with tunable mechanical and thermomechanical properties are promising substrate materials for flexible electronics applications. These UV-curable polymer compositions can easily be polymerized onto pre-fabricated electronic components and can be molded into desired geometries to provide a shape-changing behavior or a tunable softness. Alternatively, SMPs may be prepared as a flat substrate, and electronic circuitry may be built directly on top by thin film processing technologies. Whichever way the final structure is produced, the operation of electronic circuits will be influenced by the electrical and mechanical properties of the underlying (and sometimes also encapsulating) SMP substrate. Here, we present electronic properties, such as permittivity and resistivity of a typical SMP composition that has a low glass transition temperature (between 40 and 60 °C dependent on the curing process) in different thermomechanical states of polymer. We fabricated parallel plate capacitors from a previously reported SMP composition (fully softening (FS)-SMP) using two different curing processes, and then we determined the electrical properties of relative permittivity and resistivity below and above the glass transition temperature. Our data shows that the curing process influenced the electrical permittivity, but not the electrical resistivity. Corona-Kelvin metrology evaluated the quality of the surface of FS-SMP spun on the wafer. Overall, FS-SMP demonstrates resistivity appropriate for use as an insulating material.
Collapse
|
36
|
|
37
|
Abstract
In this work, surface microstructurization was coupled with shape-memory polymer to generate reversibly tunable surface properties. A photopolymerizable thiol-ene composition comprising a mixture of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT) and 2,2-dimethoxy-2-phenylacetophenone (DMPA) was used to prepare microstructured thiol-ene shape-memory film via casting and UV polymerization on the electron beam lithography fabricated arrays of 1 µm and 2 µm square pits. The mechanical deformation via compression and recovery of the surface microstructure were investigated. Results show that, after heat treatment of the deformed thiol-ene film, the recovery yields for microstructures were not worse than 90% ± 2% and 93% ± 2% for structures imprinted with 1 µm and 2 µm square pit micro imprint stamps. Additionally, heat treatment of deformed thiol-ene film resulted in the recovery of intense diffraction colors and laser diffraction patterns. This study opens up an avenue of incorporating microstructured shape-memory films for new products, e.g., optical security devices, superhydrophobic coatings, medical diagnostics and biosensors.
Collapse
|
38
|
Menon AV, Madras G, Bose S. The journey of self-healing and shape memory polyurethanes from bench to translational research. Polym Chem 2019. [DOI: 10.1039/c9py00854c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this critical review, we have enlisted a comprehensive summary of different approaches that have been used over the past decade to synthesize self-healing polyurethanes including “close then heal” and “shape memory assisted self-healing” concept.
Collapse
Affiliation(s)
- Aishwarya V. Menon
- Center for Nano Science and Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Suryasarathi Bose
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
39
|
Abstract
Smart polymers that are capable of controlled shape transformations under external stimuli have attracted significant attention in the recent years due to the resemblance of this behavior to the biological intelligence observed in nature. In this review, we focus on the recent progress in the field of shape-morphing polymers, highlighting their most promising applications in the biomedical field.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science
- Edmund T. Pratt Jr. School of Engineering
- Duke University
- Durham
- USA
| | - Leonid Ionov
- Faculty of Engineering Science
- University of Bayreuth
- 95440 Bayreuth
- Germany
| |
Collapse
|
40
|
Stiller AM, Usoro J, Frewin CL, Danda VR, Ecker M, Joshi-Imre A, Musselman KC, Voit W, Modi R, Pancrazio JJ, Black BJ. Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays. MICROMACHINES 2018; 9:E500. [PMID: 30424433 PMCID: PMC6215160 DOI: 10.3390/mi9100500] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022]
Abstract
Current intracortical probe technology is limited in clinical implementation due to the short functional lifetime of implanted devices. Devices often fail several months to years post-implantation, likely due to the chronic immune response characterized by glial scarring and neuronal dieback. It has been demonstrated that this neuroinflammatory response is influenced by the mechanical mismatch between stiff devices and the soft brain tissue, spurring interest in the use of softer polymer materials for probe encapsulation. Here, we demonstrate stable recordings and electrochemical properties obtained from fully encapsulated shape memory polymer (SMP) intracortical electrodes implanted in the rat motor cortex for 13 weeks. SMPs are a class of material that exhibit modulus changes when exposed to specific conditions. The formulation used in these devices softens by an order of magnitude after implantation compared to its dry, room-temperature modulus of ~2 GPa.
Collapse
Affiliation(s)
- Allison M Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Joshua Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Christopher L Frewin
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Vindhya R Danda
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Qualia, Inc., Dallas, TX 75252, USA.
| | - Melanie Ecker
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Alexandra Joshi-Imre
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Kate C Musselman
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Walter Voit
- Qualia, Inc., Dallas, TX 75252, USA.
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
41
|
Pilate F, Wen ZB, Khelifa F, Hui Y, Delpierre S, Dan L, Mincheva R, Dubois P, Yang KK, Raquez JM. Design of melt-recyclable poly(ε-caprolactone)-based supramolecular shape-memory nanocomposites. RSC Adv 2018; 8:27119-27130. [PMID: 35540004 PMCID: PMC9083248 DOI: 10.1039/c8ra03832e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022] Open
Abstract
A novel poly(epsilon-caprolactone) (PCL) supramolecular network exhibiting shape-memory behavior was successfully constructed with pendant UPy units that are highly able to dimerize. The dynamic network was obtained by a simple and versatile strategy consisting of chain-extension reaction between α,ω-dihydroxyoligoPCL and hydroxylated UPy units in the presence of hexamethylene diisocyanate as a coupling agent and further intermolecular dimerization of the UPy along the polyurethane backbone. 1H NMR analyses confirmed the dynamic features of the system, and DMTA in tensile mode was investigated to assess the SMP properties. Recyclability was also assessed by taking advantage of these supramolecular networks. Further addition of cellulose nanocrystals into the polymer network enabled adjustment of the extent of the net-points and therefore the SMP features. As confirmed by dispersion tests in solution and SEM observations, these bio-based nanofillers were homogeneously distributed in the network via supramolecular interaction between the hydroxyl groups present on their surface and UPy moieties along the polyurethane backbone. Thus, the here developed nanomaterials might reveal applicability in areas where a combination of SMP and biocompatibility is needed.
Collapse
Affiliation(s)
- Florence Pilate
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) 23 Place du Parc 7000 Mons Belgium
| | - Zhi-Bin Wen
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610064 China
| | - Farid Khelifa
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) 23 Place du Parc 7000 Mons Belgium
| | - Yan Hui
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610064 China
| | - Sebastien Delpierre
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) 23 Place du Parc 7000 Mons Belgium
| | - Luo Dan
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610064 China
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) 23 Place du Parc 7000 Mons Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) 23 Place du Parc 7000 Mons Belgium
| | - Ke-Ke Yang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610064 China
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS) 23 Place du Parc 7000 Mons Belgium
| |
Collapse
|
42
|
Wang K, Zhu XX. Two-Way Reversible Shape Memory Polymers Containing Polydopamine Nanospheres: Light Actuation, Robotic Locomotion, and Artificial Muscles. ACS Biomater Sci Eng 2018; 4:3099-3106. [DOI: 10.1021/acsbiomaterials.8b00671] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kaojin Wang
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - X. X. Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
43
|
Li W, Yan Z, Ren J, Qu X. Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chem Soc Rev 2018; 47:8639-8684. [DOI: 10.1039/c8cs00053k] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the recent advances and new horizons in the dynamic control of cell behaviors on functional platforms and their applications.
Collapse
Affiliation(s)
- Wen Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
44
|
Wang K, Jia YG, Zhu XX. Two-Way Reversible Shape Memory Polymers Made of Cross-Linked Cocrystallizable Random Copolymers with Tunable Actuation Temperatures. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01815] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kaojin Wang
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C
3J7, Canada
| | - Yong-Guang Jia
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C
3J7, Canada
| | - X. X. Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C
3J7, Canada
| |
Collapse
|