1
|
Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, Hou C, Cao Y, Zhou W, Liu H, Cuniberti G. Toward Smart Sensing by MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206126. [PMID: 36517115 DOI: 10.1002/smll.202206126] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The Internet of Things era has promoted enormous research on sensors, communications, data fusion, and actuators. Among them, sensors are a prerequisite for acquiring the environmental information for delivering to an artificial data center to make decisions. The MXene-based sensors have aroused tremendous interest because of their extraordinary performances. In this review, the electrical, electronic, and optical properties of MXenes are first introduced. Next, the MXene-based sensors are discussed according to the sensing mechanisms such as electronic, electrochemical, and optical methods. Initially, biosensors are introduced based on chemiresistors and field-effect transistors. Besides, the wearable pressure sensor is demonstrated with piezoresistive devices. Third, the electrochemical methods include amperometry and electrochemiluminescence as examples. In addition, the optical approaches refer to surface plasmonic resonance and fluorescence resonance energy transfer. Moreover, the prospects are delivered of multimodal data fusion toward complicated human-like senses. Eventually, future opportunities for MXene research are conveyed in the new material discovery, structure design, and proof-of-concept devices.
Collapse
Affiliation(s)
- Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology (Ministry of Education), Northeast Electric Power University, Jilin, 132012, China
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
2
|
Pang J, Peng S, Hou C, Zhao H, Fan Y, Ye C, Zhang N, Wang T, Cao Y, Zhou W, Sun D, Wang K, Rümmeli MH, Liu H, Cuniberti G. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sens 2023; 8:482-514. [PMID: 36656873 DOI: 10.1021/acssensors.2c02790] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Graphene remains of great interest in biomedical applications because of biocompatibility. Diseases relating to human senses interfere with life satisfaction and happiness. Therefore, the restoration by artificial organs or sensory devices may bring a bright future by the recovery of senses in patients. In this review, we update the most recent progress in graphene based sensors for mimicking human senses such as artificial retina for image sensors, artificial eardrums, gas sensors, chemical sensors, and tactile sensors. The brain-like processors are discussed based on conventional transistors as well as memristor related neuromorphic computing. The brain-machine interface is introduced for providing a single pathway. Besides, the artificial muscles based on graphene are summarized in the means of actuators in order to react to the physical world. Future opportunities remain for elevating the performances of human-like sensors and their clinical applications.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center and Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing 100088, People's Republic of China
| | - Yingju Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking and People's Republic of China School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, No. 3501 Daxue Road, Jinan 250353, People's Republic of China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Ministry of Education) and School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Ding Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Kai Wang
- School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
| | - Mark H Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, D-01171, Germany.,College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland.,Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse, Dresden 01069, Germany.,Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.,State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
3
|
Zheng J, Fu L, He Y, Li K, Lu Y, Xue J, Liu Y, Dong C, Chen C, Tang J. Fabrication and characterization of ZnO/Se 1-xTe x solar cells. FRONTIERS OF OPTOELECTRONICS 2022; 15:36. [PMID: 36637622 PMCID: PMC9756246 DOI: 10.1007/s12200-022-00040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/26/2022] [Indexed: 06/16/2023]
Abstract
Selenium (Se) element is a promising light-harvesting material for solar cells because of the large absorption coefficient and prominent photoconductivity. However, the efficiency of Se solar cells has been stagnated for a long time owing to the suboptimal bandgap (> 1.8 eV) and the lack of a proper electron transport layer. In this work, we tune the bandgap of the absorber to the optimal value of Shockley-Queisser limit (1.36 eV) by alloying 30% Te with 70% Se. Simultaneously, ZnO electron transport layer is selected because of the proper band alignment, and the mild reaction at ZnO/Se0.7Te0.3 interface guarantees a good-quality heterojunction. Finally, a superior efficiency of 1.85% is achieved on ZnO/Se0.7Te0.3 solar cells.
Collapse
Affiliation(s)
- Jiajia Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liuchong Fu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kanghua Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Lu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiayou Xue
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuxuan Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chong Dong
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
4
|
Hu H, Wang H, Sun Y, Li J, Wei J, Xie D, Zhu H. Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. NANOTECHNOLOGY 2021; 32:385202. [PMID: 34116515 DOI: 10.1088/1361-6528/ac0ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) ferroelectric materials are promising substitutes of three-dimensional perovskite based ferroelectric ceramic materials. Yet most studies have been focused on the construction of non-centrosymmetric 2D van der Waals materials and only a few are constructed experimentally. Herein, we experimentally demonstrate the co-existence of voltage-tunable out-of-plane (OOP) and in-plane (IP) ferroelectricity in few-layer InSe prepared by a solution-processable method and fabricate ferroelectric semiconductor channel transistors. The reversible polarization can initiate instant switch of resistance with high ON/OFF ratios and a comparable subthreshold swing of 160 mV/dec under gate modulation. The origins of such unique OOP and IP ferroelectricity of the centrosymmetric structure are theoretically analyzed.
Collapse
Affiliation(s)
- Haowen Hu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huaipeng Wang
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yilin Sun
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jiawei Li
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jinliang Wei
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dan Xie
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Fu C, Xu B, Dong L, Zhai J, Wang X, Wang DY. Highly efficient BiVO 4single-crystal nanosheets with dual modification: phosphorus doping and selective Ag modification. NANOTECHNOLOGY 2021; 32:325701. [PMID: 33906165 DOI: 10.1088/1361-6528/abfc0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BiVO4, a visible-light response photocatalyst, has shown tremendous potential because of abundant raw material sources, good stability and low cost. There exist some limitations for further applicaitions due to poor capability to separate electron-hole pairs. In fact, a single-component modification strategy is barely adequate to obtain highly efficient photocatalytic performance. In this work, P substituted some of the V atoms from VO4oxoanions, namely P was doped into the V sites in the host lattice of BiVO4by a hydrothermal route. Meanwhile, Ag as an attractive and efficient electron-cocatalyst was selectively modified on the (010) facet of BiVO4nanosheets via facile photo-deposition. As a result, the obtained dually modified BiVO4sheets exhibited enhanced photocatalytic degradation property of methylene blue (MB). In detail, photocatalytic rate constant (k) was 2.285 min-1g-1, which was 2.78 times higher than pristine BiVO4nanosheets. Actually, P-doping favored the formation of O vacancies, led to more charge carriers, and facilitated photocatalytic reaction. On the other hand, metallic Ag loaded on (010) facet effectively transferred photogenerated electrons, which consequently helped electron-hole pairs separation. The present work may enlighten new thoughts for smart design and controllable synthesis of highly efficient photocatalytic materials.
Collapse
Affiliation(s)
- Can Fu
- IMDEA Materials Institute, E-28906 Getafe, Madrid, Spain
- E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Baoyun Xu
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Lingling Dong
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Jinguo Zhai
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Xuefei Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - De-Yi Wang
- IMDEA Materials Institute, E-28906 Getafe, Madrid, Spain
| |
Collapse
|
6
|
Characterization of Plasmonic Scattering, Luminescent Down-Shifting, and Metal-Enhanced Fluorescence and Applications on Silicon Solar Cells. NANOMATERIALS 2021; 11:nano11041013. [PMID: 33921008 PMCID: PMC8071456 DOI: 10.3390/nano11041013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022]
Abstract
This paper studied characterized the plasmonic effects of silver nanoparticles (Ag-NPs), the luminescent down-shifting of Eu-doped phosphor particles, and the metal-enhanced fluorescence (MEF) achieved by combining the two processes to enhance the conversion efficiency of silicon solar cells. We obtained measurements of photoluminescence (PL) and external quantum efficiency (EQE) at room temperature to determine whether the fluorescence emissions intensity of Eu-doped phosphor was enhanced or quenched by excitation induced via surface plasmon resonance (SPR). Overall, fluorescence intensity was enhanced when the fluorescence emission band was strongly coupled to the SPR band of Ag-NPs and the two particles were separated by a suitable distance. We observed a 1.125× increase in PL fluorescence intensity at a wavelength of 514 nm and a 7.05% improvement in EQE (from 57.96% to 62.05%) attributable to MEF effects. The combined effects led to a 26.02% increase in conversion efficiency (from 10.23% to 12.89%) in the cell with spacer/NPs/SOG-phosphors and a 22.09% increase (from 10.23% to 12.48%) in the cell with spacer/SOG-phosphors, compared to the bare solar cell. This corresponds to an impressive 0.85% increase in absolute efficiency (from 12.04% to 12.89%), compared to the cell with only spacer/SOG.
Collapse
|