1
|
Miller K, Gayle JM, Roy S, Abdellah MH, Hardian R, Cseri L, Demingos PG, Nadella HR, Lee F, Tripathi M, Gupta S, Guo G, Bhattacharyya S, Wang X, Dalton AB, Garg A, Singh CV, Vajtai R, Szekely G, Ajayan P. Tunable 2D Conjugated Porous Organic Polymer Films for Precise Molecular Nanofiltration and Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401269. [PMID: 38687141 DOI: 10.1002/smll.202401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Structural design of 2D conjugated porous organic polymer films (2D CPOPs), by tuning linkage chemistries and pore sizes, provides great adaptability for various applications, including membrane separation. Here, four free-standing 2D CPOP films of imine- or hydrazone-linked polymers (ILP/HLP) in combination with benzene (B-ILP/HLP) and triphenylbenzene (TPB-ILP/HLP) aromatic cores are synthesized. The anisotropic disordered films, composed of polymeric layered structures, can be exfoliated into ultrathin 2D-nanosheets with layer-dependent electrical properties. The bulk CPOP films exhibit structure-dependent optical properties, triboelectric nanogenerator output, and robust mechanical properties, rivaling previously reported 2D polymers and porous materials. The exfoliation energies of the 2D CPOPs and their mechanical behavior at the molecular level are investigated using density function theory (DFT) and molecular dynamics (MD) simulations, respectively. Exploiting the structural tunability, the comparative organic solvent nanofiltration (OSN) performance of six membranes having different pore sizes and linkages to yield valuable trends in molecular weight selectivity is investigated. Interestingly, the OSN performances follow the predicted transport modeling values based on theoretical pore size calculations, signifying the existence of permanent porosity in these materials. The membranes exhibit excellent stability in organic solvents at high pressures devoid of any structural deformations, revealing their potential in practical OSN applications.
Collapse
Affiliation(s)
- Kristen Miller
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Mohamed H Abdellah
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rifan Hardian
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Levente Cseri
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, UK
- Department of Chemistry, Femtonics Ltd., Tuzolto u. 58, Budapest, 1094, Hungary
| | - Pedro G Demingos
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Hema Rajesh Nadella
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Frank Lee
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Manoj Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Sashikant Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Galio Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, Houston, Texas, 77005, USA
| | - Alan B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Ashish Garg
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Chandra Veer Singh
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pulickel Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
2
|
Bade I, Karde V, Schenck L, Solomos M, Figus M, Chen C, Axnanda S, Heng JYY. Process-Induced Crystal Surface Anisotropy and the Impact on the Powder Properties of Odanacatib. Pharmaceutics 2024; 16:883. [PMID: 39065580 PMCID: PMC11279451 DOI: 10.3390/pharmaceutics16070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Crystalline active pharmaceutical ingredients with comparable size and surface area can demonstrate surface anisotropy induced during crystallization or downstream unit operations such as milling. To the extent that varying surface properties impacts bulk powder properties, the final drug product performance such as stability, dissolution rates, flowability, and dispersibility can be predicted by understanding surface properties such as surface chemistry, energetics, and wettability. Here, we investigate the surface properties of different batches of Odanacatib prepared through either jet milling or fast precipitation from various solvent systems, all of which meet the particle size specification established to ensure equivalent biopharmaceutical performance. This work highlights the use of orthogonal surface techniques such as Inverse Gas Chromatography (IGC), Brunauer-Emmett-Teller (BET) surface area, contact angle, and X-ray Photoelectron Spectroscopy (XPS) to demonstrate the effect of processing history on particle surface properties to explain differences in bulk powder properties.
Collapse
Affiliation(s)
- Isha Bade
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (I.B.); (V.K.)
| | - Vikram Karde
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (I.B.); (V.K.)
| | - Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (L.S.)
| | - Marina Solomos
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (L.S.)
| | - Margaret Figus
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (M.F.); (C.C.)
| | - Chienhung Chen
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (M.F.); (C.C.)
| | - Stephanus Axnanda
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA; (M.F.); (C.C.)
| | - Jerry Y. Y. Heng
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK; (I.B.); (V.K.)
| |
Collapse
|
3
|
Zhu Q, Lv P, Zhang Y, Wang Y, Luo G, An Z, Hu M, Hu K, Li W, Yang F, Zhang B, Ku Z, Cheng YB, Lu J. LiTFSI-Free Hole Transport Materials for Robust Perovskite Solar Cells and Modules with High Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8875-8884. [PMID: 38343187 DOI: 10.1021/acsami.3c17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Lithium bis(trifluoromethane) sulfonamide (LiTFSI) and oxygen-doped organic semiconductors have been frequently used to achieve record power conversion efficiencies of perovskite solar cells (PSCs). However, this conventional doping process is time-consuming and leads to poor device stability due to the incorporation of Li ions. Herein, aiming to accelerate the doping process and remove the Li ions, we report an alternative p-doping process by mixing a new small-molecule organic semiconductor, N2,N2,N7,N7-tetrakis (4-methoxyphenyl)-9-(4-(octyloxy) phenyl)-9H carbazole-2,7-diamine (labeled OH44) and its preoxidized form OH44+(TFSI-). With this method, a champion efficiency of 21.8% has been achieved for small-area PSCs, which is superior to the state-of-the-art EH44 and comparable with LiTFSI and oxygen-doped spiro-OMeTAD. Moreover, the stability of OH44-based PSCs is improved compared with those of EH44, maintaining more than 85% of its initial efficiency after aging in an ambient condition without encapsulation for 1000 h. In addition, we achieved efficiencies of 14.7 and 12.6% for the solar modules measured with a metal mask of 12.0 and 48.0 cm2, respectively, which demonstrated the scalability of this method.
Collapse
Affiliation(s)
- Qinglong Zhu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Pin Lv
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuxi Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yijie Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Gan Luo
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Ziqi An
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Min Hu
- School of Electronic and Electrical Engineering, Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Kaiwen Hu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Wangnan Li
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Feifei Yang
- Shanxi Lu'An Photovoltaics Technology Co., Ltd., Changzhi 046011, China
| | - Bo Zhang
- Shanxi Lu'An Photovoltaics Technology Co., Ltd., Changzhi 046011, China
| | - Zhiliang Ku
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yi-Bing Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jianfeng Lu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
4
|
Filatova K, Domincova Bergerova E, Kazantseva N, Masar M, Suly P, Sopik T, Cisar J, Durpekova S, Sedlarik V. Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment. Polymers (Basel) 2023; 15:3500. [PMID: 37688125 PMCID: PMC10490196 DOI: 10.3390/polym15173500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Kateryna Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech Republic
| | - Eva Domincova Bergerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Natalia Kazantseva
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Tomas Sopik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Jaroslav Cisar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| |
Collapse
|
5
|
Kim HC, Kwon YR, Kim JS, So JH, Kim DH. Dual-Cure Adhesives Using a Newly Synthesized Itaconic Acid-Based Epoxy Acrylate Oligomer. Polymers (Basel) 2023; 15:3304. [PMID: 37571198 PMCID: PMC10422372 DOI: 10.3390/polym15153304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Herein, a novel biomass-derived itaconic acid (IA)-based epoxy acrylate oligomer (EAO) is synthesized by means of the esterification reaction of the epoxy group of bisphenol A diglycidyl ether (BADGE) with the carboxylic group of IA. The detailed chemical structure of the as-prepared bisphenol A diglycidyl ether diitaconate (BI) is characterized via the KOH value, FT-IR spectrum, and 1H-NMR spectrum. Further, a dual-cure adhesive system is formulated using BADGE, acrylic acid, and trimethylolpropane triacrylate with various BI contents, and the adhesive performance is investigated by measuring the thermal stability, adhesive properties, pencil hardness, and surface energy properties. Thus, the dual-cure adhesive with a BI content of 0.3 mol is shown to provide excellent thermal stability, along with an adhesive strength of 10.7 MPa, a pencil hardness of 2H, and a similar surface energy to that of a typical polycarbonate film. In addition, the properties of the BI-based dual-cure adhesive are compared with those of the dual-cure adhesives based on bisphenol A glycerolate diacrylate or bisphenol A glycerolate dimethacrylate.
Collapse
Affiliation(s)
- Hae-Chan Kim
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan-si 15588, Republic of Korea
| | - Yong-Rok Kwon
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan-si 15588, Republic of Korea
| | - Jung-Soo Kim
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
| | - Dong-Hyun Kim
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
| |
Collapse
|
6
|
Scheepers D, Casimiro A, Borneman Z, Nijmeijer K. Addressing Specific (Poly)ion Effects for Layer-by-Layer Membranes. ACS APPLIED POLYMER MATERIALS 2023; 5:2032-2042. [PMID: 36935653 PMCID: PMC10012173 DOI: 10.1021/acsapm.2c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 05/12/2023]
Abstract
Layer-by-layer (LbL) assembly of the alternating adsorption of oppositely charged polyions is an extensively studied method to produce nanofiltration membranes. In this work, the concept of chaotropicity of the polycation and its counterion is introduced in the LbL field. In general, the more chaotropic a polyion, the lower its effective charge, charge availability, and hydrophilicity. Here, this is researched for the well-known PDADMAC (polydiallyldimethylammonium chloride) and PAH (poly(allylamine) hydrochloride), and the synthesized PAMA (polyallylmultimethylammonium), with two different counterions (I- and Cl-). Higher chaotropicity (PDADMAC > PAMA-I > PAMA-Cl > PAH) translates into a reduced charge availability and a more pronounced extrinsic charge compensation, resulting in more mass adsorption and a higher pure water permeability. PAMA-containing membranes show the most interesting results in the series. Due to its molecular structure, the chaotropicity of this polycation perfectly lies between PDADMAC and PAH. Overall, the chaotropicity of PAMA membranes allows for the formation of the right balance between extrinsic and intrinsic charge compensation with PSS. Moreover, modifying the nature of the counterions of PAMA (I- or Cl-) allows to tune the density of the multilayer and results in lower size exclusion abilities with PAMA-I compared to PAMA-Cl (higher MWCO and lower MgSO4 retention). In general, the contextualization of the polyion interaction within the specific (poly)ion effects expands the understanding of the influence of the charge density of polycations without ignoring the chemical nature of the functional groups in their monomer units.
Collapse
|
7
|
Zhao Y, Liu F, Wei Y, Sun J. Construction of micro/macro‐scale Janus polypeptoid‐based two‐dimensional structures at the air–water interface. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Yue Zhao
- Key Laboratory of Biobased Polymer Materials College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Fujun Liu
- Key Laboratory of Biobased Polymer Materials College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Yuhan Wei
- Key Laboratory of Biobased Polymer Materials College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University Changchun China
| |
Collapse
|
8
|
Masaya TW, Goulay F. A Molecular Dynamic Study of the Effects of Surface Partitioning on the OH Radical Interactions with Solutes in Multicomponent Aqueous Aerosols. J Phys Chem A 2023; 127:751-764. [PMID: 36639126 DOI: 10.1021/acs.jpca.2c07419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The surface-bulk partitioning of small saccharide and amide molecules in aqueous droplets was investigated using molecular dynamics. The air-particle interface was modeled using a 80 Å cubic water box containing a series of organic molecules and surrounded by gaseous OH radicals. The properties of the organic solutes within the interface and the water bulk were examined at a molecular level using density profiles and radial pair distribution functions. Molecules containing only polar functional groups such as urea and glucose are found predominantly in the water bulk, forming an exclusion layer near the water surface. Substitution of a single polar group by an alkyl group in sugars and amides leads to the migration of the molecule toward the interface. Within the first 2 nm from the water surface, surface-active solutes lose their rotational freedom and adopt a preferred orientation with the alkyl group pointing toward the surface. The different packing within the interface leads to different solvation shell structures and enhanced interaction between the organic molecules and absorbed OH radicals. The simulations provide quantitative information about the dimension, composition, and organization of the air-water interface as well as about the nonreactive interaction of the OH radicals with the organic solutes. It suggests that increased concentrations, preferred orientations, and decreased solvation near the air-water surface may lead to differences in reactivities between surface-active and surface-inactive molecules. The results are important to explain how heterogeneous oxidation mechanisms and kinetics within interfaces may differ from those of the bulk.
Collapse
Affiliation(s)
- Tadini Wenyika Masaya
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
9
|
Gosiamemang T, Heng JY. Sodium hydroxide catalysed silica sol-gel synthesis: Physicochemical properties of silica nanoparticles and their post-grafting using C8 and C18 alkyl-organosilanes. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Novel Self-Forming Nanosized DDS Particles for BNCT: Utilizing A Hydrophobic Boron Cluster and Its Molecular Glue Effect. Cells 2022; 11:cells11203307. [PMID: 36291173 PMCID: PMC9600043 DOI: 10.3390/cells11203307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
BNCT is a non-invasive cancer therapy that allows for cancer cell death without harming adjacent cells. However, the application is limited, owing to the challenges of working with clinically approved boron (B) compounds and drug delivery systems (DDS). To address the issues, we developed self-forming nanoparticles consisting of a biodegradable polymer, namely, “AB-type Lactosome (AB-Lac)” loaded with B compounds. Three carborane isomers (o-, m-, and p-carborane) and three related alkylated derivatives, i.e., 1,2-dimethy-o-carborane (diC1-Carb), 1,2-dihexyl-o-carborane (diC6-Carb), and 1,2-didodecyl-o-carborane (diC12-Carb), were separately loaded. diC6-Carb was highly loaded with AB-Lac particles, and their stability indicated the “molecular glue” effect. The efficiency of in vitro B uptake of diC6-Carb for BNCT was confirmed at non-cytotoxic concentration in several cancer cell lines. In vivo/ex vivo biodistribution studies indicated that the AB-Lac particles were remarkably accumulated within 72 h post-injection in the tumor lesions of mice bearing syngeneic breast cancer (4T1) cells, but the maximum accumulation was reached at 12 h. In ex vivo B biodistribution, the ratios of tumor/normal tissue (T/N) and tumor/blood (T/Bl) of the diC6-Carb-loaded particles remained stably high up to 72 h. Therefore, we propose the diC6-Carb-loaded AB-Lac particles as a promising candidate medicine for BNCT.
Collapse
|
11
|
Vakil AU, Ramezani M, Monroe MBB. Magnetically Actuated Shape Memory Polymers for On-Demand Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207279. [PMID: 36295344 PMCID: PMC9611458 DOI: 10.3390/ma15207279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 05/27/2023]
Abstract
Repeated use of intravenous infusions to deliver drugs can cause nerve damage, pain, and infection. There is an unmet need for a drug delivery method that administers drugs on demand for prolonged use. Here, we developed magnetically responsive shape memory polymers (SMPs) to enhance control over drug release. Iron oxide magnetic nanoparticles (mnps) were synthesized and incorporated into previously developed SMPs to enable magnetically induced shape memory effects that can be activated remotely via the application of an alternating magnetic field. These materials were tested for their shape memory properties (dynamic mechanical analysis), cytocompatibility (3T3 fibroblast viability), and tunable drug delivery rates (UV−VIS to evaluate the release of incorporated doxorubicin, 6-mercaptopurine, and/or rhodamine). All polymer composites had >75% cytocompatibility over 72 h. Altering the polymer chemistry and mnp content provided methods to tune drug release. Namely, linear polymers with higher mnp content had faster drug release. Highly cross-linked polymer networks with lower mnp content slowed drug release. Shape memory properties and polymer/drug interactions provided additional variables to tune drug delivery rates. Polymers that were fixed in a strained secondary shape had a slower release rate compared with unstrained polymers, and hydrophobic drugs were released more slowly than hydrophilic drugs. Using these design principles, a single material with gradient chemistry and dual drug loading was synthesized, which provided a unique mechanism to deliver two drugs from a single scaffold with distinct delivery profiles. This system could be employed in future work to provide controlled release of selected drug combinations with enhanced control over release as compared with previous approaches.
Collapse
|
12
|
Zhu D, Kurahashi E, You H, Wada T, Chammingkwan P, Taniike T. Enhancing Mechanical Properties of Graft-Type Nanocomposites Using Organically Modified SiO2 and Polypropylene Containing Reactive Methoxy Groups. Polymers (Basel) 2022; 14:polym14030563. [PMID: 35160552 PMCID: PMC8838797 DOI: 10.3390/polym14030563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
In situ grafting of a reactive matrix and nanofillers is a promising strategy to fabricate graft-type polypropylene (PP)-based nanocomposites, where the grafting efficiency is affected by the initial dispersion of nanofillers in the matrix. In this work, influences of surface organic modification of nanofillers were investigated on properties of PP/SiO2 nanocomposites using poly(propylene-co-octenyltrimethoxysilane) as a reactive matrix. The surface modification of SiO2, especially with longer alkyl chains, led to improved dispersion of nanoparticles, thus promoting the grafting reaction and mechanical properties. The combination of in situ grafting and surface modification of nanofillers provided several benefits, most notably in balancing the strength and the toughness, which could not be achieved by the grafting alone.
Collapse
Affiliation(s)
- Dongzhi Zhu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (D.Z.); (H.Y.); (T.W.)
| | - Eiji Kurahashi
- Kojima Industries Corporation, 3-30 Shimoichiba-cho, Toyota 471-8588, Aichi, Japan;
| | - Hui You
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (D.Z.); (H.Y.); (T.W.)
| | - Toru Wada
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (D.Z.); (H.Y.); (T.W.)
| | - Patchanee Chammingkwan
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (D.Z.); (H.Y.); (T.W.)
- Correspondence: (P.C.); (T.T.); Tel.: +81-761-51-1630 (T.T.)
| | - Toshiaki Taniike
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (D.Z.); (H.Y.); (T.W.)
- Correspondence: (P.C.); (T.T.); Tel.: +81-761-51-1630 (T.T.)
| |
Collapse
|
13
|
Tsukuda Y, Mizuhara N, Usuki Y, Yamaguchi Y, Ogita A, Tanaka T, Fujita K. Structure-activity relationships of antifungal phenylpropanoid derivatives and their synergy with n-dodecanol and fluconazole. Lett Appl Microbiol 2021; 74:377-384. [PMID: 34825394 DOI: 10.1111/lam.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
trans-Anethole (anethole) is a phenylpropanoid; with other drugs, it exhibits synergistic activity against several fungi and is expected to be used in new therapies that cause fewer patient side effects. However, the detailed substructure(s) of the molecule responsible for this synergy has not been fully elucidated. We investigated the structure-activity relationships of phenylpropanoids and related derivatives, with particular attention on the methoxy group and the double bond of the propenyl group in anethole, as well as the length of the p-alkyl chain in p-alkylanisoles. Antifungal potency was largely related to p-alkyl chain length and the methoxy group of anethole, but not to the double bond of its propenyl group. Production of reactive oxygen species also played a role in these fungicidal activities. Inhibition of drug efflux was associated with the length of the p-alkyl chain and the double bond of the propenyl group in anethole, but not with the methoxy group. Although a desirable synergy was observed between n-dodecanol and anethole or p-alkylanisoles with a length of C2-C6 in alkyl chains, it cannot be explained away as being solely due to the inhibition of drug efflux. Similar results were obtained when phenylpropanoid derivatives were combined with fluconazole against Candida albicans.
Collapse
Affiliation(s)
- Y Tsukuda
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - N Mizuhara
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Y Usuki
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Y Yamaguchi
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - A Ogita
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - T Tanaka
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - K Fujita
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
14
|
Baig N, Kammakakam I. Removal of Oily Contaminants from Water by Using the Hydrophobic Ag Nanoparticles Incorporated Dopamine Modified Cellulose Foam. Polymers (Basel) 2021; 13:polym13183163. [PMID: 34578068 PMCID: PMC8471367 DOI: 10.3390/polym13183163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of oil-related contaminants in water has emerged as a severe threat to the environment. The separation of these contaminants from water has become a great challenge, and extensive efforts are being made to develop suitable, environmentally friendly materials. Highly hydrophobic materials are effective in the selective separation of oil from water. In this work, silver (Ag)-incorporated, highly hydrophobic dopamine-modified cellulose sponge was prepared by functionalizing with the range of alkyl silanes. The Ag nanoparticle-incorporated dopamine provided the appropriate roughness, whereas the alkyl component provided the low surface energy that made it selective towards oil. It was found that the alkyl groups with a longer chain length were more effective in enhancing the hydrophobicity of the Ag nanoparticle-incorporated, dopamine-modified cellulose. The developed materials were characterized by Fourier transform infrared spectroscopy (FTIR), field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, and contact angle goniometry. The maximum water contact angle on the functionalized surfaces was observed at 148.4°. The surface of the C18s-Ag-DA-Cell-F showed excellent selectivity towards the oily component that rapidly permeated, and water was rejected wholly. The developed material showed a separation efficiency of 96.2% for the oil/water mixture. The C18s-Ag-DA-Cell-F material showed excellent reusability. Due to their environmentally friendly nature, excellent selectivity, and good separation efficiency, the functionalized cellulose materials can be used to separate oil and water effectively.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Correspondence: or (N.B.); or (I.K.)
| | - Irshad Kammakakam
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, USA
- Correspondence: or (N.B.); or (I.K.)
| |
Collapse
|
15
|
Ouyang J, Chen J, Chen W, Rosbottom I, Guo M, Heng JYY. Application of Phenyl-Functionalized Porous Silica for the Selective Crystallization of Carbamazepine Metastable Form II. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinbo Ouyang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, P. R. China
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Jian Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, P. R. China
| | - Wenqian Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Ian Rosbottom
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Mingxia Guo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Jerry Y. Y. Heng
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|