1
|
Ojah EO, Gneid H, Herschede SR, Busschaert N. Structure-Activity Relationships in Supramolecular Hosts Targeting Bacterial Phosphatidylethanolamine (PE) Lipids. Chemistry 2024; 30:e202402698. [PMID: 39231001 DOI: 10.1002/chem.202402698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
The World Health Organization has described the antimicrobial resistance crisis as one of the top ten global public health threats. New antimicrobial agents that can fight infections caused by antimicrobial resistant pathogens are therefore needed. A potential strategy is the development of small molecules that can selectively interact with bacterial membranes (or membranes of other microbial pathogens), and thereby rapidly kill the bacteria. Here, we report the structure-activity relationship within a group of 22 compounds that were designed to bind the bacterial lipid phosphatidylethanolamine (PE). Liposome-based studies reveal that the lipophilicity of the compounds has the strongest effect on both the affinity and selectivity for PE. The best results were obtained for compounds with logP≈3.75, which showed a 5x-7x selectivity for bacterial PE lipids over human PC (phosphatidylcholine) lipids. Furthermore, these compounds also showed potent antibacterial activity against the Gram-positive bacterium B. cereus, with minimum inhibitory concentrations (MICs) below 10 μM, a concentration where they showed minimal hemolytic activity against human red blood cells. These results not only show the possibility of PE-binding small molecules to function as antibiotics, but also provide guidelines for the development of compounds targeting other types of biologically relevant membrane lipids.
Collapse
Affiliation(s)
- Emmanuel O Ojah
- Chemistry, Tulane University, New Orleans, LA, United States
| | - Hassan Gneid
- Chemistry, Tulane University, New Orleans, LA, United States
| | | | | |
Collapse
|
2
|
Chattopadhayay S, Wanjari P, Talukdar P. Acylhydrazone-based reversibly photoswitchable ion pair transporter with OFF-ON cotransport activity. Chem Sci 2024; 15:d4sc02474e. [PMID: 39355225 PMCID: PMC11440441 DOI: 10.1039/d4sc02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
The cellular membrane transport of physiologically important cations and anions is omnipresent and regulates different physiological functions. Whereas a notable number of cation-anion transporters are being developed to transport salts across the membrane, developing an artificial cation-anion symporter with stimulus-responsive activities is an immense obstacle. Herein, for the first time, we report reversibly photoswitchable acylhydrazone-based transporter 2 that has distinctive OFF-ON cation-anion co-transport abilities. The substituent was modified in 1a-1c and 2, to change the to-and-fro movement of the transporter to enhance the ion transport efficiency. Ion transport experiments across the lipid bilayer membrane demonstrate that 1a has the highest transport activity among the series with irreversible photoisomerization properties, whereas 2 has a unique reversible photoisomerization property. A detailed transport study indicated that the E-conformer of compound 2 facilitates Na+/Cl- transport via the symport process by following the carrier mode of ion transport. 23Na NMR and chloride selective electrode assays confirmed the OFF and ON state of ion transport of compound 2 with photoirradiation. An assembly of [(2 E )2 + NaCl] was subjected to geometry optimization to understand the responsible ion binding motif. Geometry optimization followed by the natural bond orbital analysis of 1a Z and 2 Z demonstrated that 1a Z forms comparatively stronger intramolecular H-bonding than 2 Z , making it accessible for reversible photoisomerization.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Paras Wanjari
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pashan Pune 411008 Maharashtra India
| |
Collapse
|
3
|
Yang Y, Li P, Feng H, Zeng R, Li S, Zhang Q. Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review. Molecules 2024; 29:3828. [PMID: 39202907 PMCID: PMC11357536 DOI: 10.3390/molecules29163828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Efficient delivery of therapeutic agents to the lesion site or specific cells is an important way to achieve "toxicity reduction and efficacy enhancement". Macrocycles have always provided many novel ideas for drug or gene loading and delivery processes. Specifically, macrocycles represented by crown ethers, cyclodextrins, cucurbit[n]urils, calix[n]arenes, and pillar[n]arenes have unique properties, which are different cavity structures, good biocompatibility, and good stability. Benefited from these diverse properties, a variety of supramolecular drug delivery systems can be designed and constructed to effectively improve the physical and chemical properties of guest molecules as needed. This review provides an outlook on the current application status and main limitations of macrocycles in supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Chuandong Hospital & Dazhou First People’s Hospital, Dazhou 635000, China
| |
Collapse
|
4
|
Wang X, Wang J, Liu S, Dou M, Gao B. Sterilization mechanism and nanotoxicity of visible light-driven defective carbon nitride and UV-excited TiO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132109. [PMID: 37734307 DOI: 10.1016/j.jhazmat.2023.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 09/23/2023]
Abstract
The sterilization effect of photocatalysis and biotoxicity of nanomaterial catalysts have attracted high attention. In this study, the novel visible-driven defective carbon nitride (VL/DCN) system exhibits non-photoreactivation, non-toxic superior performance compared with traditional ultraviolet radiation (UV) and UV/titanium dioxide (UV/TiO2). The inactivation of antibiotic-resistant bacteria (ARB) by novel VL/DCN still reached 7 log within 4 h, and the reduction rates of aminoglycoside gene strB and tetracycline gene tetA exceeded 0.8 log and 1.2 log, respectively. Further, the sterilization mechanism and nanotoxicity were contrastively and systematically analyzed among above three systems as following. Firstly, in the VL/DCN system, reactive oxygen species (ROSs) generated from photocatalytic process leads to the destruction of cell membranes, resulting in dissolving out of potassium ion (K+), protein and cell membrane ATP content. Thus, resistant bacteria were completely inactivated and photoreactivation disappears. In contrast, the UV only acted on bacterial DNA and existed the light resurrection. The UV/TiO2 strictly dependent on ultraviolet light and can be used in limited scenarios. Secondly, in cell viability analysis by human lung cell line BEAS-2B experiments, the 10% inhibition of cell growth when DCN was 600 mg/L much lower than 28% inhibition of cell growth when TiO2 was only 200 mg/L. The expression of pro-inflammatory cytokines ((Interleukin, IL) -6), IL-8, IL-1β) under the effect of DCN was 1.5-fold, 5.7-fold and 3.7-fold lower than TiO2, respectively. Meanwhile, DCN induced cells to produce less ROSs, malondialdehyde (MDA), and more superoxide dismutase (SOD). Above results demonstrated that DCN has far lower cytotoxicity than TiO2. This study provides theoretical support for the application of photocatalytic sterilization technology and the exploration of the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Jin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China.
| | - Shanjun Liu
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Mengmeng Dou
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Boru Gao
- China International Engineering Consulting Corporation, Beijing 100048, China
| |
Collapse
|
5
|
Chattopadhayay S, Ghosh A, Kumar Mukhopadhyay T, Sharma R, Datta A, Talukdar P. Supramolecular Barrel-Rosette Ion Channel Based on 3,5-Diaminobenzoic Acid for Cation-Anion Symport. Angew Chem Int Ed Engl 2023; 62:e202313712. [PMID: 37732556 DOI: 10.1002/anie.202313712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
The structural tropology and functions of natural cation-anion symporting channels have been continuously investigated due to their crucial role in regulating various physiological functions. To understand the physiological functions of the natural symporter channels, it is vital to develop small-molecule-based biomimicking systems that can provide mechanistic insights into the ion-binding sites and the ion-translocation pathways. Herein, we report a series of bis((R)-(-)-mandelic acid)-linked 3,5-diaminobenzoic acid based self-assembled ion channels with distinctive ion transport ability. Ion transport experiment across the lipid bilayer membrane revealed that compound 1 b exhibits the highest transport activity among the series, and it has interesting selective co-transporting functions, i.e., facilitates K+ /ClO4 - symport. Electrophysiology experiments confirmed the formation of supramolecular ion channels with an average diameter of 6.2±1 Å and single channel conductance of 57.3±1.9 pS. Selectivity studies of channel 1 b in a bilayer lipid membrane demonstrated a permeability ratio ofP C l - / P K + = 0 . 053 ± 0 . 02 ${{P}_{{Cl}^{-}}/{P}_{{K}^{+}}=0.053\pm 0.02}$ ,P C l O 4 - / P C l - = 2 . 1 ± 0 . 5 ${{P}_{{ClO}_{4}^{-}}/{P}_{{Cl}^{-}}=2.1\pm 0.5}$ , andP K + / P N a + = 1 . 5 ± 1 , ${{P}_{{K}^{+}}/{P}_{{Na}^{+}}=1.5\pm 1,}$ indicating the higher selectivity of the channel towards KClO4 over KCl salt. A hexameric assembly of a trimeric rosette of 1 b was subjected to molecular dynamics simulations with different salts to understand the supramolecular channel formation and ion selectivity pattern.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Rashmi Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Raja Subodh Chandra Mallick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| |
Collapse
|
6
|
Special issue on “Membranes and Water Treatment”. Front Chem Sci Eng 2022; 16:561-563. [PMID: 35280075 PMCID: PMC8900957 DOI: 10.1007/s11705-021-2136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/25/2022]
|
7
|
KHURANA RAMAN, Yang F, Khurana R, Liu J, Keinan E, Reany O. semiaza-Bambusurils are Anion-Specific Transmembrane Transporters . Chem Commun (Camb) 2022; 58:3150-3153. [DOI: 10.1039/d2cc00144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
semiaza-Bambus[6]urils efficiently transport anions across lipid membranes. A systematic modification of their lipophilic side chains to include various alkyl groups and thioethers reveal that the most efficient chloride transporters are...
Collapse
|
8
|
Affiliation(s)
- Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|