1
|
Pugazhendhi A, Kamarudin SK, Alshehri MA, Ganesan R, Brindhadevi K. Nanomaterials - A promising solution for textile and fossil fuel generated pollutants. ENVIRONMENTAL RESEARCH 2024; 258:119427. [PMID: 38889840 DOI: 10.1016/j.envres.2024.119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - S K Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Chemical Engineering, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | | | - Ramya Ganesan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
2
|
Yaghoubi S, Sadjadi S, Zhong X, Yuan P, Heravi MM. Clay-supported bio-based Lewis acid ionic liquid as a potent catalyst for the dehydration of fructose to 5-hydroxymthylfurfural. Sci Rep 2024; 14:82. [PMID: 38168002 PMCID: PMC10762215 DOI: 10.1038/s41598-023-50773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Caffeine and halloysite nanoclay mineral that are bio-based compounds were utilized to synthesize a novel Lewis acid heterogeneous catalyst. To this aim, halloysite was functionalized with 2,4,6-trichloro-1,3,5-triazine and reacted with caffeine, which was then converted to ionic liquid via a reaction with ZnCl2. The catalyst was applied for promoting the dehydration of fructose to 5-hydroxymethylfurfural. To investigate the effects of the reaction variables, response surface methodology was used. The product was achieved in 98.5% in 100 min using a catalyst loading of 30 wt% at 100 °C. Moreover, the catalyst was recyclable up to six runs with slight zinc leaching. Comparison of the catalytic activity of the catalyst with that of halloysite and a control catalyst with one caffeine-based Lewis acid ionic liquid confirmed the superior activity of the former and the important role of 2,4,6-trichloro-1,3,5-triazine for increasing the number of the grafted caffeine and thus the acidic sites of the catalyst. A plausible reaction mechanism was proposed, and the activity of the catalyst for other carbohydrates was also studied. According to the results, this catalyst catalyzed the reaction of other substrates to furnish 5-hydroxymethylfurfural in low to moderate yields. According to the kinetic studies, the activation energy was estimated to be 22.85 kJ/mol.
Collapse
Affiliation(s)
- Soheila Yaghoubi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Xuemin Zhong
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran
| |
Collapse
|
3
|
Singh S, Kumar A, Nebhani L, Hazra CK. Sustainable Sulfonic Acid Functionalized Tubular Shape Mesoporous Silica as a Heterogeneous Catalyst for Selective Unsymmetrical Friedel-Crafts Alkylation in One Pot. JACS AU 2023; 3:3400-3411. [PMID: 38155639 PMCID: PMC10751772 DOI: 10.1021/jacsau.3c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023]
Abstract
The development of general and more sustainable heterogeneous catalytic processes for Friedel-Crafts (FC) alkylation reactions is a key objective of interest for the synthesis of pharmaceuticals and commodity chemicals. Sustainable heterogeneous catalysis for the typical FC alkylation of an easily accessible carbonyl electrophile and arenes or with two different arene nucleophiles in one-pot is a prime challenge. Herein, we present a resolution to these issues through the design and utilization of a mesoporous silica catalyst that has been functionalized with sulfonic acid. For the synthesis of sulfonic acid-functionalized mesoporous silica (MSN-SO3H), thiol-functionalized mesoporous silica was first synthesized by the co-condensation method, followed by oxidation of the thiol functionality to the sulfonic acid group. Sulfonation of mesoporous silica was confirmed by 13C CP MAS NMR spectroscopy. Further, the devised heterogeneous catalysis using MSN-SO3H has been successfully employed in the construction of diverse polyalkanes including various bioactive molecules, viz arundine, tatarinoid-C, and late-stage functionalization of natural products like menthol and Eugenol. Further, we have utilized this sustainable technique to facilitate the formation of unsymmetrical C-S bonds in a one-pot fashion. In addition, the catalyst was successfully recovered and recycled for eight cycles, demonstrating the high sustainability and cost-effectiveness of this protocol for both academic and industrial applications.
Collapse
Affiliation(s)
- Sanjay Singh
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Amit Kumar
- Department
of Materials Science and Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Leena Nebhani
- Department
of Materials Science and Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Shi H, Gu X, Shi Y, Wang D, Shu S, Wang Z, Chen J. Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni−Sn intermetallic compounds with methanol as hydrogen donor. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Yadav G, Yadav N, Ahmaruzzaman M. Microwave-assisted synthesis of biodiesel by a green carbon-based heterogeneous catalyst derived from areca nut husk by one-pot hydrothermal carbonization. Sci Rep 2022; 12:21455. [PMID: 36509869 PMCID: PMC9744914 DOI: 10.1038/s41598-022-25877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, we have synthesized a solid acid catalyst by areca nut husk using low temperature hydrothermal carbonization method. The fabricated catalyst has enhanced sulfonic actives sites (3.12%) and high acid density (1.88 mmol g-1) due to -SO3H, which are used significantly for effective biodiesel synthesis at low temperatures. The chemical composition and morphology of the catalyst is determined by various techniques, such as Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Scanning electron microscope (SEM), Energy disruptive spectroscopy (EDS), Mapping, Thermogravimetric analysis (TGA), CHNS analyzer, Transmission electron microscopy (TEM), particle size analyzer, and X-ray photoelectron spectroscopy (XPS). Acid-base back titration method was used to determine the acid density of the synthesized material. In the presence of the as-fabricated catalyst, the conversion of oleic acid (OA) to methyl oleate reached 96.4% in 60 min under optimized conditions (1:25 Oleic acid: methanol ratio, 80 °C, 60 min, 9 wt% catalyst dosage) and observed low activation energy of 45.377 kJ mol-1. The presence of the porous structure and sulfonic groups of the catalyst contributes to the high activity of the catalyst. The biodiesel synthesis was confirmed by gas-chromatography mass spectrometer (GC-MS) and Nuclear magnetic resonance (NMR). The reusability of the catalyst was examined up to four consecutive cycles, yielding a high 85% transformation of OA to methyl oleate on the fourth catalytic cycle.
Collapse
Affiliation(s)
- Gaurav Yadav
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| | - Nidhi Yadav
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| | - Md. Ahmaruzzaman
- grid.444720.10000 0004 0497 4101Department of Chemistry, National Institute of Technology, Silchar, Assam 788010 India
| |
Collapse
|
6
|
Zhao S, Ma Z, Ding X, Yang Q, Wang Y, Zhao X, Zhang D. Vinyl Silane Modified Silica-Grafted Sulfonic Acid Based Polymeric Ionic Liquids for Efficient Catalytic Hydrolysis of Cyclohexanone Oxime. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shanshan Zhao
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin300130, China
| | - Zhengxiang Ma
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin300130, China
| | - Xiaoshu Ding
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin300130, China
- Hebei Industrial Technology Research Institute of Green Chemical Industry, Huanghua061100, Hebei, China
| | - Qiusheng Yang
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin300130, China
- Hebei Industrial Technology Research Institute of Green Chemical Industry, Huanghua061100, Hebei, China
| | - Yanji Wang
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin300130, China
- Hebei Industrial Technology Research Institute of Green Chemical Industry, Huanghua061100, Hebei, China
| | - Xinqiang Zhao
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin300130, China
- Hebei Industrial Technology Research Institute of Green Chemical Industry, Huanghua061100, Hebei, China
| | - Dongsheng Zhang
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin300130, China
- Hebei Industrial Technology Research Institute of Green Chemical Industry, Huanghua061100, Hebei, China
| |
Collapse
|
7
|
Elmowafy M, Alruwaili NK, Ahmad N, Kassem AM, Ibrahim MF. Quercetin-Loaded Mesoporous Silica Nanoparticle-Based Lyophilized Tablets for Enhanced Physicochemical Features and Dissolution Rate: Formulation, Optimization, and In Vitro Evaluation. AAPS PharmSciTech 2022; 24:6. [PMID: 36447021 DOI: 10.1208/s12249-022-02464-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNPs) have been proposed as a potential approach for stabilizing the amorphous state of poorly water-soluble actives. This study aimed to improve the physiochemical characteristics of poorly water-soluble quercetin (QT) through a novel lyophilized formulation. Various parameters, including solvent polarity, QT-carrier mass ratio, and adsorption time, were studied to improve the loading of QT into MSNPs. The optimized loaded MSNPs were formulated into lyophilized tablets through a freeze-drying process using hydrophilic polyvinylpyrrolidone (PVP-K30) as a polymeric stabilizer and water-soluble sucrose as a cryoprotectant. The effect of PVP-K30 and sucrose on the particle size, disintegration time, friability, and time required to release 90% of QT were studied using 32 full factorial design. The optimized formula was characterized using different evaluating techniques; for instance, differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, drug content, moisture content, and saturation solubility. The analysis proved that QT was consistently kept in the nanosize range with a narrow size distribution. The loaded silica nanoparticles and the optimized formulation are in an amorphous state devoid of any chemical interaction with the silica matrix or the lyophilization excipients. The optimized formula also featured low friability (less than 1%), fast disintegration (< 30 s), and a pronounced enhancement in saturation solubility and dissolution rate. Briefly, we established that the lyophilized MSNPs-based tablet would be a potential strategy for improving the rate of dissolution and, ultimately, the bioavailability of the poorly water-soluble QT.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed F Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
8
|
Nanostructured Functionalised Niobium Oxide as Chemoselective Catalyst for Acetalation of Glucose. Top Catal 2022. [DOI: 10.1007/s11244-022-01738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|