1
|
Bilal M, Qamar SA, Carballares D, Berenguer-Murcia Á, Fernandez-Lafuente R. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnol Adv 2024; 70:108304. [PMID: 38135131 DOI: 10.1016/j.biotechadv.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Proteases have gained significant scientific and industrial interest due to their unique biocatalytic characteristics and broad-spectrum applications in different industries. The development of robust nanobiocatalytic systems by attaching proteases onto various nanostructured materials as fascinating and novel nanocarriers has demonstrated exceptional biocatalytic performance, substantial stability, and ease of recyclability over multiple reaction cycles under different chemical and physical conditions. Proteases immobilized on nanocarriers may be much more resistant to denaturation caused by extreme temperatures or pH values, detergents, organic solvents, and other protein denaturants than free enzymes. Immobilized proteases may present a lower inhibition. The use of non-porous materials in the immobilization prevents diffusion and steric hindrances during the binding of the substrate to the active sites of enzymes compared to immobilization onto porous materials; when using very large or solid substrates, orientation of the enzyme must always be adequate. The advantages and problems of the immobilization of proteases on nanoparticles are discussed in this review. The continuous and batch reactor operations of nanocarrier-immobilized proteases have been successfully investigated for a variety of applications in the leather, detergent, biomedical, food, and pharmaceutical industries. Information about immobilized proteases on various nanocarriers and nanomaterials has been systematically compiled here. Furthermore, different industrial applications of immobilized proteases have also been highlighted in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| | - Sarmad Ahmad Qamar
- Department of Environmental, Biological & Pharmaceutical Sciences, and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Diego Carballares
- Department of Biocatalysis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | | |
Collapse
|
2
|
El Salamony DH, El Gayar DA, El Mahdy AR, Zaghloul TI. Preparation and characterization of silica nanoparticles as an efficient carrier for two bio‐detergents based enzymes. J SURFACTANTS DETERG 2023. [DOI: 10.1002/jsde.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Dina H. El Salamony
- Department of Biotechnology Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| | - Dina A. El Gayar
- Chemical Engineering Department, Faculty of Engineering Alexandria University Alexandria Egypt
| | - Ahmed R. El Mahdy
- Food Science and Technology Department, Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Taha I. Zaghloul
- Department of Biotechnology Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| |
Collapse
|
3
|
Mechri S, Bouacem K, Chalbi T, Khaled M, Allala F, Bouanane‐Darenfed A, Hacene H, Jaouadi B. A Taguchi design approach for the enhancement of a
detergent‐biocompatible
alkaline thermostable protease production by
Streptomyces mutabilis
strain
TN‐X30. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| | - Khelifa Bouacem
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences (FBAS) University Mouloud Mammeri of Tizi‐Ouzou (UMMTO) Tizi‐Ouzou Algeria
| | - Taha‐Bilel Chalbi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| | - Marwa Khaled
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| | - Fawzi Allala
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
| | - Amel Bouanane‐Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| |
Collapse
|
4
|
Razzaghi M, Homaei A, Vianello F, Azad T, Sharma T, Nadda AK, Stevanato R, Bilal M, Iqbal HMN. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst Eng 2022; 45:237-256. [PMID: 34596787 DOI: 10.1007/s00449-021-02647-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomaterials, gained popularity for the enzymes' improved stability, reusability, and ease of separation from the biocatalytic process. Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal-organic frameworks, multi-walled or single-walled carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical compositions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understanding, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, biofuel production, textile, leather, detergent, food industries and antifouling.
Collapse
Affiliation(s)
- Mozhgan Razzaghi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Roberto Stevanato
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Venice, Italy
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico
| |
Collapse
|
5
|
Herrera-Márquez O, Fernández-Serrano M, Pilamala M, Jácome M, Luzón G. Stability studies of an amylase and a protease for cleaning processes in the food industry. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Fujimoto A, Tanaka T, Oya M. Analysis of Cleaning Process for Several Kinds of Soil by Probability Density Functional Method. J Oleo Sci 2017; 66:1109-1120. [PMID: 28924082 DOI: 10.5650/jos.ess17043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A method of analyzing the detergency of various soils by assuming normal distributions for the soil adhesion and soil removal forces was developed by considering the relationship between the soil type and the distribution profile of the soil removal force. The effect of the agitation speed on the soil removal was also analyzed by this method. Washing test samples were prepared by soiling fabrics with individual soils such as particulate soils, oily dyes, and water-soluble dyes. Washing tests were conducted using a Terg-O-Tometer and four repetitive washing cycles of 5 min each. The transition of the removal efficiencies was recorded in order to calculate the mean value (μrl) and the standard deviation (σrl) of the removal strength distribution. The level of detergency and the temporal alteration in the detergency can be represented by μrl and σrl, respectively. A smaller σrl indicates a smaller increase in the detergency with time, which also indicates the existence of a certain amount of soil with a strong adhesion force. As a general trend, the values of σrl were the greatest for the oily soils, followed by those of the water-soluble soils and particulate soils in succession. The relationship between the soil removal processes and the soil adhesion force was expressed on the basis of the transition of the distribution of residual soil. Evaluation of the effects of the agitation speed on µrl and ơrl showed that σrl was not affected by the agitation speed; the value of µrl for solid soil and oily soil increased with increasing agitation, and the µrl of water-soluble soil was not specifically affected by the agitation speed. It can be assumed that the parameter ơrl is related to the characteristics of the soil and the adhesion condition, and can be applied to estimating the soil removal mechanism.
Collapse
Affiliation(s)
- Akihiro Fujimoto
- Graduate School of Environment and Information Sciences, Yokohama National University
| | - Terumasa Tanaka
- Graduate School of Environment and Information Sciences, Yokohama National University
| | - Masaru Oya
- Faculty of Environment and Information Sciences, Yokohama National University
| |
Collapse
|