1
|
Thermal adaptation and fatty acid profiles of bone marrow and muscles in mammals: Implications of a study of caribou (Rangifer tarandus caribou). PLoS One 2022; 17:e0268593. [PMID: 36454772 PMCID: PMC9714762 DOI: 10.1371/journal.pone.0268593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Mammals have evolved several physiological mechanisms to cope with changes in ambient temperature. Particularly critical among them is the process of keeping the membrane of cells in a fluid phase to prevent metabolic dysfunction. In this paper, we examine variation in the fatty acid composition of bone marrow and muscle tissues in the cold-adapted caribou (Rangifer tarandus caribou) to determine whether there are systematic differences in fatty acid profiles between anatomical regions that could potentially be explained by thermal adaptation as influenced by cell function, including hematopoiesis. Our results indicate that the bone marrow and muscle tissues from the appendicular skeleton are more unsaturated than the same tissues in the axial skeleton, a finding that is consistent with physiological adaptation of the appendicular regions to thermal challenges. Because mechanisms of thermal adaptation appear to be widely shared among terrestrial mammals, we suggest that the same patterns may prevail in other species, possibly including humans.
Collapse
|
2
|
Adaptive evolution of the ACSL gene family in Carnivora. Genetica 2019; 147:141-148. [DOI: 10.1007/s10709-019-00057-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
3
|
Abstract
Feline hepatic lipidosis (FHL) is a common and potentially fatal liver disorder. Although the pathophysiologic mechanisms of FHL remain elusive, there is an imbalance between the influx of fatty acids from peripheral fat stores into the liver, de novo liposynthesis, and the rate of hepatic oxidation and dispersal of hepatic TAG via excretion of very-low density lipoproteins. The diagnosis of FHL is based on anamnestic, clinical, and clinicopathologic findings, associated with diagnostic imaging of the liver, and cytology, or histological examination of liver biopsies. Fluid therapy, electrolyte correction and adequate early nutrition are essential components of the therapy for FHL.
Collapse
Affiliation(s)
- Chiara Valtolina
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands.
| | - Robert P Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
4
|
Fasting enriches liver triacylglycerol with n-3 polyunsaturated fatty acids: implications for understanding the adipose-liver axis in serum docosahexaenoic acid regulation. GENES AND NUTRITION 2015; 10:39. [PMID: 26386841 DOI: 10.1007/s12263-015-0490-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/29/2015] [Indexed: 01/11/2023]
Abstract
We investigated the effect of short-term fasting on coordinate changes in the fatty acid composition of adipose triacylglycerol (TAG), serum non-esterified fatty acids (NEFA), liver TAG, and serum TAG and phospholipids in mice fed ad libitum or fasted for 16 h overnight. In contrast to previous reports under conditions of maximal lipolysis, adipose tissue TAG was not preferentially depleted of n-3 PUFA or any specific fatty acids, nor were there any striking changes in the serum NEFA composition. Short-term fasting did, however, increase the hepatic proportion of n-3 PUFA, and almost all individual species of n-3 PUFA showed relative and absolute increases. The relative proportion of n-6 PUFA in liver TAG also increased but to a lesser extent, resulting in a significant decrease in the n-6:n-3 PUFA ratio (from 14.3 ± 2.54 to 9.6 ± 1.20), while the proportion of MUFA decreased significantly and SFA proportion did not change. Examination of genes involved in PUFA synthesis suggested that hepatic changes in the elongation and desaturation of precursor lipids could not explain this effect. Rather, an increase in the expression of fatty acid transporters specific for 22:6n-3 and other long-chain n-3 and n-6 PUFA likely mediated the observed hepatic enrichment. Analysis of serum phospholipids indicated a specific increase in the concentration of 22:6n-3 and 16:0, suggesting increased specific synthesis of DHA-enriched phospholipid by the liver for recirculation. Given the importance of blood phospholipid in distributing DHA to neural tissue, these findings have implications for understanding the adipose-liver-brain axis in n-3 PUFA metabolism.
Collapse
|
5
|
|
6
|
Louis C, Perdaens L, Suciu S, Tavoni SK, Crocker DE, Debier C. Mobilisation of blubber fatty acids of northern elephant seal pups (Mirounga angustirostris) during the post-weaning fast. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:78-86. [DOI: 10.1016/j.cbpa.2015.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/23/2014] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
|
7
|
Abstract
The mobilization of fatty acids during food deprivation is a selective process studied in different species (humans, rodents, birds, viverrids). The aim of this work was to study the effect of fasting on selective mobilization in commercial pigs. A total of 16 barrows (Large White×Landrace (167 kg±12.5 kg live weight) were subdivided into two homogeneous groups, one subjected to 12 h and the other to 60 h of fasting (fasting time) before slaughtering. For each pig inner and outer backfat layer were sampled at slaughter and at ham trimming 24 h later (sampling time). Increasing the fasting time and the sampling time after slaughter caused an increase in the amount of free fatty acids in both layers. Therefore it can be argued that during fasting lipolysis is stimulated and remains active also after slaughtering. The factors that stimulate lipolysis determine a greater mobilization of unsaturated fatty acids than saturated ones. Thus fasting time may influence the suitability of pork for processing and conservation, since free fatty acids are more suitable for oxidation than the esterified ones.
Collapse
|
8
|
Ben-Hamo M, McCue MD, Khozin-Goldberg I, McWilliams SR, Pinshow B. Ambient temperature and nutritional stress influence fatty acid composition of structural and fuel lipids in Japanese quail (Coturnix japonica) tissues. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:244-50. [DOI: 10.1016/j.cbpa.2013.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/15/2023]
|
9
|
Viscarra JA, Ortiz RM. Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism 2013; 62:889-97. [PMID: 23357530 PMCID: PMC3640658 DOI: 10.1016/j.metabol.2012.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/06/2012] [Accepted: 12/25/2012] [Indexed: 01/11/2023]
Abstract
Food deprivation in mammals results in profound changes in fuel metabolism and substrate regulation. Among these changes are decreased reliance on the counter-regulatory dynamics by insulin-glucagon due to reduced glucose utilization, and increased concentrations of lipid substrates in plasma to meet the energetic demands of peripheral tissues. As the primary storage site of lipid substrates, adipose tissue must then be a primary contributor to the regulation of metabolism in food deprived states. Through its regulation of lipolysis, adipose tissue influences the availability of carbohydrate, lipid, and protein substrates. Additionally, lipid substrates can act as ligands to various nuclear receptors (retinoid x receptor (RXR), liver x receptor (LXR), and peroxisome proliferator-activated receptor (PPAR)) and exhibit prominent regulatory capabilities over the expression of genes involved in substrate metabolism within various tissues. Therefore, through its control of lipolysis, adipose tissue also indirectly regulates the utilization of metabolic substrates within peripheral tissues. In this review, these processes are described in greater detail and the extent to which adipose tissue and lipid substrates regulate metabolism in food deprived mammals is explored with comments on future directions to better assess the contribution of adipose tissue to metabolism.
Collapse
Affiliation(s)
- Jose Abraham Viscarra
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 N Lake Rd., Merced, CA 95343, USA.
| | | |
Collapse
|
10
|
Price ER, Armstrong C, Guglielmo CG, Staples JF. Selective mobilization of saturated fatty acids in isolated adipocytes of hibernating 13-lined ground squirrels Ictidomys tridecemlineatus. Physiol Biochem Zool 2013; 86:205-12. [PMID: 23434780 DOI: 10.1086/668892] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fatty acids are not mobilized from adipocyte triacylglycerols uniformly but rather some are preferentially mobilized while others are preferentially retained. In many vertebrate species, the pattern of differential mobilization is determined by the physical and chemical properties of each fatty acid. Fatty acids with shorter chains and more double bonds tend to be more readily mobilized than others, a pattern observed both in whole-animal studies and in isolated adipocytes. Several hibernating species seem to break this pattern, however, and retain 18:2ω6 (linoleic acid) while mobilizing saturated fatty acids such as 18:0. We sought to confirm this pattern in adipocytes of a hibernator, the 13-lined ground squirrel Ictidomys tridecemlineatus, and to investigate mobilization patterns for the first time at hibernation temperature. We isolated adipocytes from summer active and winter torpid squirrels and incubated them with 1 μM norepinephrine at 4°C (7 h) and 37°C (90 min). We measured the proportion of each fatty acid in the adipose tissue and in the buffer at the end of incubation. Patterns of mobilization were similar in both seasons and incubation temperatures. Saturated fatty acids (18:0 and 16:0) were highly mobilized relative to the average, while some unsaturated fatty acids (notably, 18:1ω9 and 18:2ω6) were retained. We conclude that hibernators have unique mechanisms at the level of adipose tissue that preferentially mobilize saturated fatty acids. Additionally, we found that adipocytes from hibernating squirrels produced more glycerol than those from summer squirrels (regardless of temperature), indicating a higher lipolytic capacity in hibernating squirrels.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
11
|
Mustonen AM, Käkelä R, Halonen T, Kärjä V, Vartiainen E, Nieminen P. Fatty acid mobilization in voles--model species for rapid fasting response and fatty liver. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:152-60. [PMID: 22643335 DOI: 10.1016/j.cbpa.2012.05.196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/19/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022]
Abstract
Factors regulating fatty acid (FA) composition of small herbivores are poorly known. Because of the fast response to food deprivation, the tissue FA profiles of voles could be rapidly modified. The selectivity of incorporating dietary FA into tissue total lipids and mobilizing tissue FA was examined in two Microtus vole species either fed or fasted for 12-18 h. The FA composition of the tissues reflected the dietary lipids, but FA were selectively incorporated depending on their structure. The FA profiles of white and brown adipose tissues were different and contained more saturated and monounsaturated FA and less polyunsaturated FA (PUFA) than the diet. The essential PUFA precursors with smaller tissue percentages were likely converted into longer-chain derivatives for structural lipids. The FA composition of the vole tissues was selectively modified by food deprivation. The preferences for retention or loss were tissue-specific and related to the FA structure. Livers displayed steatosis with characteristic accumulation of triacylglycerols, while FA prevalent in membrane phospholipids decreased in proportion. Hepatic FA could be partly derived from lipids hydrolyzed in fat depots. The FA profiles of the vole tissues reflect the dietary lipids and are rapidly and selectively modified by food deprivation.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, PO Box 111, FI-80101, Joensuu, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
Rouvinen-Watt K, Mustonen AM, Conway R, Pal C, Harris L, Saarela S, Strandberg U, Nieminen P. Rapid Development of Fasting-Induced Hepatic Lipidosis in the American Mink (Neovison vison): Effects of Food Deprivation and Re-Alimentation on Body Fat Depots, Tissue Fatty Acid Profiles, Hematology and Endocrinology. Lipids 2009; 45:111-28. [DOI: 10.1007/s11745-009-3377-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/24/2009] [Indexed: 11/24/2022]
|
13
|
Mustonen A, Käkelä R, Asikainen J, Nieminen P. Selective Fatty Acid Mobilization from Adipose Tissues of the Pheasant (Phasianus colchicus mongolicus) during Food Deprivation. Physiol Biochem Zool 2009; 82:531-40. [DOI: 10.1086/605393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Fatty Acid Composition and Development of Hepatic Lipidosis During Food Deprivation—Mustelids as a Potential Animal Model for Liver Steatosis. Exp Biol Med (Maywood) 2009; 234:278-86. [DOI: 10.3181/0806-rm-210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome characterized by asymptomatic hepatic steatosis. It is present in most cases of human obesity but also caused e.g., by rapid weight loss. The patients have decreased n-3 polyunsaturated fatty acid (PUFA) proportions with decreased percentages of 18:3(n-3), 20:5(n-3) and 22:6(n-3) and an increased n-6/n-3 PUFA ratio in liver and/or white adipose tissue (WAT). The present study examined a new experimental model to study liver steatosis with possible future applications to NAFLD. Ten European polecats ( Mustela putorius), the wild form of the domestic ferret, were food-deprived for 5 days with 10 fed animals as controls. The food-deprived animals showed micro- and macrovesicular hepatic steatosis, decreased proportions of 20:5(n-3), 22:6(n-3) and total n-3 PUFA and increased n-6/n-3 PUFA ratios in liver and WAT. At the same time, the product/precursor ratios decreased in liver. The observed effects can be due to selective fatty acid mobilization preferring n-3 PUFA over n-6 PUFA, decreased Δ5 and Δ6 desaturase activities, oxidative stress, decreased arginine availability and activation of the endocannabinoid system. Hepatic lipidosis induced by food deprivation was manifested in the fatty acid composition of the polecat with similarities to human NAFLD despite the different principal etiologies.
Collapse
|
15
|
Price ER, Krokfors A, Guglielmo CG. Selective mobilization of fatty acids from adipose tissue in migratory birds. J Exp Biol 2008; 211:29-34. [DOI: 10.1242/jeb.009340] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
During times of high energy demand, stored fatty acids are mobilized from adipocytes. This mobilization has previously been shown to be a non-random process, with more hydrophilic fatty acids being mobilized most readily. The objectives of this study were to characterize the relative mobilization of fatty acids from adipocytes in two migratory bird species and to investigate possible changes in selective fatty acid mobilization associated with the migratory period. Captive ruffs (Philomachus pugnax) and white-crowned sparrows (Zonotrichia leucophrys) were studied. The sparrows were divided into two treatments: `winter' (photoperiod 8 h:16 h L:D)and `migrant' (in which migratory condition was induced with a photoperiodic manipulation of 8 h:16 h L:D, followed by 16 h:8 h L:D). Adipose tissue was removed from ruffs and sparrows and incubated for 90 min after stimulation with epinephrine. The proportions of individual fatty acid species released into the incubation medium were compared with their proportions in the adipocytes to determine relative mobilizations. We found that patterns of relative mobilization in ruffs and sparrows are similar to those of mammals,with shorter chain lengths and more double bonds leading to higher relative mobilization. Seasonal condition in sparrows did not alter this pattern. This pattern of relative mobilization from adipocytes seems to be a general rule amongst birds and mammals and should be considered before inferring functionality about selective retention or mobilization of certain fatty acids. The composition of adipose stores in birds may affect migratory performance; however, our results indicate that patterns of relative mobilization at the adipocytes do not vary with season in migratory birds.
Collapse
Affiliation(s)
- Edwin R. Price
- Division of Biological Sciences, University of Montana, Missoula, MT 59812,USA
| | - Anna Krokfors
- Faculty of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
16
|
Selective Seasonal Fatty Acid Accumulation and Mobilization in the Wild Raccoon Dog (Nyctereutes procyonoides). Lipids 2007; 42:1155-67. [DOI: 10.1007/s11745-007-3118-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
17
|
Mustonen AM, Käkelä R, Nieminen P. Different fatty acid composition in central and peripheral adipose tissues of the American mink (Mustela vison). Comp Biochem Physiol A Mol Integr Physiol 2007; 147:903-10. [PMID: 17412626 DOI: 10.1016/j.cbpa.2007.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 12/19/2006] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
Fatty acid (FA) composition in the intraabdominal (IAB), subcutaneous (SC) and peripheral adipose tissues of the semiaquatic American mink (Mustela vison) was examined in comparison to the diet by gas-liquid chromatography. There was a clear compositional gradient from the IAB via SC to peripheral adipose tissues and the anatomically different adipose tissues accumulated or metabolized FA selectively. The total lipids of the body appendages had smaller proportions of saturated (SFA) and larger proportions of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) than the lipids of the trunk adipose tissues. Especially n-3 PUFA were enriched in the periphery. The appendages were also characterized with a high ratio of unsaturated FA to SFA, an increased Delta9-desaturation index and increased mean numbers of double bonds and carbon atoms in a FA molecule. The proportions of SFA and MUFA of the diet resembled the trunk adipose tissues while the dietary percentage of n-3 PUFA surpassed those of the trunk fat depots but was lower than those of the peripheral fats. These data confirm that the FA signatures of mammals reflect not only their dietary history but also metabolic modifications of ingested FA.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Faculty of Biosciences, University of Joensuu, P.O. Box 111, FIN-80101, Joensuu, Finland.
| | | | | |
Collapse
|
18
|
Nieminen P, Rouvinen-Watt K, Saarela S, Mustonen AM. Fasting in the American marten (Martes americana): a physiological model of the adaptations of a lean-bodied animal. J Comp Physiol B 2007; 177:787-95. [PMID: 17605015 DOI: 10.1007/s00360-007-0175-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
The American marten (Martes americana) is a boreal forest marten with low body adiposity throughout the year. The aim of this study was to investigate the adaptations of this lean-bodied species to fasting for an ecologically relevant duration (48 h) by exposing eight farm-bred animals to total food deprivation with seven control animals. Selected morphological and hematological parameters, plasma and serum biochemistry, endocrinological variables and liver and white adipose tissue (WAT) enzyme activities were determined. After 48 h without food, the marten were within phase II of fasting with depleted liver and muscle glycogen stores, but with active lipid mobilization indicated by the high lipase activities in several WAT depots. The plasma ghrelin concentrations were higher due to food deprivation, possibly increasing appetite and enhancing foraging behavior. The lower plasma insulin and higher cortisol concentrations could mediate augmented lipolysis and the lower triiodothyronine levels could suppress the metabolic rate. Fasting did not affect the plasma levels of stress-associated catecholamines or variables indicating tissue damage. In general, the adaptations to short-term fasting exhibited some differences compared to the related farm-bred American mink (Mustela vison), an example of which was the better ability of the marten to hydrolyze lipids despite its significantly lower initial fat mass.
Collapse
Affiliation(s)
- Petteri Nieminen
- Faculty of Biosciences, University of Joensuu, P.O. Box 111, 80101, Joensuu, Finland.
| | | | | | | |
Collapse
|
19
|
Nieminen P, Mustonen AM. Uniform Fatty Acid Mobilization from Anatomically Distinct Fat Depots in the Sable (Martes zibellina). Lipids 2007; 42:659-69. [PMID: 17541798 DOI: 10.1007/s11745-007-3061-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 04/30/2007] [Indexed: 11/27/2022]
Abstract
The mobilization of fatty acids (FA) is a selective process in humans, rodents and the few previously studied carnivores. The FA composition of and mobilization from different fat depots reflect the functions of adipose tissues, e.g. in energy storage or insulation. Sixteen farm-raised sables (Martes zibellina), a terrestrial mustelid, were assigned into a fed control group or fasted for 4 days. The FA composition of the sable was relatively similar to other previously studied mustelids. The masses of the different fat depots decreased by 28-55% during fasting. The subcutaneous (sc) and intraabdominal (iab) fats had a uniform FA composition and the sable could mobilize both sc and iab FA. 18:3n-3, 18:4n-3 and 16:1n-7 were effectively mobilized, while long-chain saturated (SFA) and monounsaturated FA (MUFA) increased in proportion. Relative mobilization (RM) correlated inversely with the FA chain length and Delta9-desaturation increased RM of several MUFA compared to SFA. The results reinforce the hypothesis that the terrestrial sable can utilize sc and iab fat depots as energy reserves during nutritional scarcity. The natural history of the species is an important determinant of the FA composition and RM between anatomically different fat depots.
Collapse
Affiliation(s)
- Petteri Nieminen
- Faculty of Biosciences, University of Joensuu, P.O. Box 111, 80101 Joensuu, Finland.
| | | |
Collapse
|
20
|
Selective fatty acid mobilization in the American mink (Mustela vison) during food deprivation. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:81-93. [DOI: 10.1016/j.cbpb.2006.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 11/16/2022]
|