1
|
Cheng C, Yu X, Huang F, Wang L, Zhu Z, Yang J, Chen P, Deng Q. Effect of heat-treated flaxseed lignan macromolecules on the interfacial properties and physicochemical stability of α-linolenic acid-enriched O/W emulsions. Food Funct 2024; 15:9524-9540. [PMID: 39223970 DOI: 10.1039/d4fo02663b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flaxseed lignan macromolecules (FLMs) are important polyphenols present in flaxseeds with interfacial adsorption behavior. However, FLMs are easily degraded during thermal treatment in emulsions, which further influences their interfacial properties and application. In this work, the interfacial properties of FLMs between oil and water were evaluated using compression isotherms and interfacial tension to investigate the regulation mechanism of FLMs and their heat-treated products on the stability of O/W emulsions. Furthermore, the improvement mechanism of FLM heat-treated products on the physicochemical stability of flaxseed oil emulsions was clarified. Studies showed that thermal degradation occurred on terminal phenolic acids in FLMs when treated under 100 and 150 °C (FLM-100 and FLM-150) without any decrease in antioxidant activity. FLM-100 and FLM-150 improved the physicochemical stability of sunflower lecithin (S90)-stabilized flaxseed oil emulsions and reduced the concentration of hydroperoxides and TBARS by 26.7% and 80% (p < 0.05), respectively, during storage. This was due to the high interfacial anchoring of FLM-100 and FLM-150, which further strengthened the interface of oil droplets and improved the interfacial antioxidant effect of FLMs. This implies that FLM-100 and FLM-150 could act as new efficient antioxidants for application in food emulsions.
Collapse
Affiliation(s)
- Chen Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| | - Xiao Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| | - Lei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jing Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| | - Peng Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
2
|
Dose-response relationship between dietary choline and lipid accumulation in pyloric enterocytes of Atlantic salmon ( Salmo salar L.) in seawater. Br J Nutr 2020; 123:1081-1093. [PMID: 32037990 DOI: 10.1017/s0007114520000434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Foamy, whitish appearance of the pyloric caeca, reflecting elevated lipid content, histologically visible as hypervacuolation, is frequently observed in Atlantic salmon fed high-plant diets. Lipid malabsorption syndrome (LMS) is suggested as term for the phenomenon. Earlier studies have shown that insufficient supply of phospholipids may cause similar symptoms. The objective of the present study was to strengthen knowledge on the role of choline, the key component of phosphatidylcholine, in development of LMS as well as finding the dietary required choline level in Atlantic salmon. A regression design was chosen to be able to estimate the dietary requirement level of choline, if found essential for the prevention of LMS. Atlantic salmon (456 g) were fed diets supplemented with 0, 392, 785, 1177, 1569, 1962, 2354, 2746 and 3139 mg/kg choline chloride. Fish fed the lowest-choline diet had pyloric caeca with whitish foamy surface, elevated relative weight, and the enterocytes were hypervacuolated. These characteristics diminished with increasing choline level and levelled off at levels of 2850, 3593 and 2310 mg/kg, respectively. The concomitant alterations in expression of genes related to phosphatidylcholine synthesis, cholesterol biosynthesis, lipid transport and storage confirmed the importance of choline in lipid turnover in the intestine and ability to prevent LMS. Based on the observations of the present study, the lowest level of choline which prevents LMS and intestinal lipid hypervacuolation in post-smolt Atlantic salmon is 3·4 g/kg. However, the optimal level most likely depends on the feed intake and dietary lipid level.
Collapse
|
3
|
Hansen AKG, Kortner TM, Krasnov A, Björkhem I, Penn M, Krogdahl Å. Choline supplementation prevents diet induced gut mucosa lipid accumulation in post-smolt Atlantic salmon (Salmo salar L.). BMC Vet Res 2020; 16:32. [PMID: 32005242 PMCID: PMC6995171 DOI: 10.1186/s12917-020-2252-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Various intestinal morphological alterations have been reported in cultured fish fed diets with high contents of plant ingredients. Since 2000, salmon farmers have reported symptoms indicating an intestinal problem, which we suggest calling lipid malabsorption syndrome (LMS), characterized by pale and foamy appearance of the enterocytes of the pyloric caeca, the result of lipid accumulation. The objective of the present study was to investigate if insufficient dietary choline may be a key component in development of the LMS. Results The results showed that Atlantic salmon (Salmo salar), average weight 362 g, fed a plant based diet for 79 days developed signs of LMS. In fish fed a similar diet supplemented with 0.4% choline chloride no signs of LMS were seen. The relative weight of the pyloric caeca was 40% lower, reflecting 65% less triacylglycerol content and histologically normal gut mucosa. Choline supplementation further increased specific fish growth by 18%. The concomitant alterations in intestinal gene expression related to phosphatidylcholine synthesis (chk and pcyt1a), cholesterol transport (abcg5 and npc1l1), lipid metabolism and transport (mgat2a and fabp2) and lipoprotein formation (apoA1 and apoAIV) confirmed the importance of choline in lipid turnover in the intestine and its ability to prevent LMS. Another important observation was the apparent correlation between plin2 expression and degree of enterocyte hyper-vacuolation observed in the current study, which suggests that plin2 may serve as a marker for intestinal lipid accumulation and steatosis in fish. Future research should be conducted to strengthen the knowledge of choline’s critical role in lipid transport, phospholipid synthesis and lipoprotein secretion to improve formulations of plant based diets for larger fish and to prevent LMS. Conclusions Choline prevents excessive lipid accumulation in the proximal intestine and is essential for Atlantic salmon in seawater.
Collapse
Affiliation(s)
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Ingemar Björkhem
- Department of Laboratory Medicine, Division for Clinical Chemistry, Karolinska University Hospital, Huddinge, Sweden
| | - Michael Penn
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Present Address: US Fish & Wildlife Service, Northeast Fishery Center, Lamar Fish Health Center, Lamar, PA, 16848, USA
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
4
|
Torno C, Staats S, Fickler A, de Pascual-Teresa S, Soledad Izquierdo M, Rimbach G, Schulz C. Combined effects of nutritional, biochemical and environmental stimuli on growth performance and fatty acid composition of gilthead sea bream (Sparus aurata). PLoS One 2019; 14:e0216611. [PMID: 31086380 PMCID: PMC6516738 DOI: 10.1371/journal.pone.0216611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
The reliance of the aquafeed industry on marine resources has to be reduced by innovative approaches in fish nutrition. Thus, a three-factorial approach (fish oil reduced diet, phytochemical genistein, and temperature reduction) was chosen to investigate the interaction of effects on growth performance and tissue omega-3 long chain polyunsaturated fatty acid (LC-PUFA) levels in juvenile sea bream (Sparus aurata, 12.5 ± 2.2 g). Genistein is a phytoestrogen with estrogen-like activity and thus LC-PUFA increasing potential. A decrease in the rearing temperature was chosen based on the positive effects of low temperature on fish lipid quality. The experimental diets were reduced in marine ingredients and had a fish oil content of either 6% dry matter (DM; F6: positive control) or 2% DM (F2: negative control) and were administered in the plain variant or with inclusion of 0.15% DM genistein (F6 + G and F2 + G). The feeding trial was performed simultaneously at 23°C and 19°C. The results indicated that solely temperature had a significant effect on growth performance and whole body nutrient composition of sea bream. Nevertheless, the interaction of all three factors significantly affected the fatty acid compositions of liver and fillet tissue. Most importantly, they led to a significant increase by 4.3% of fillet LC-PUFA content in sea bream fed with the diet F6 + G in comparison to control fish fed diet F6, when both groups were held at 19°C. It is hypothesized that genistein can act via estrogen-like as well as other mechanisms and that the dietary LC-PUFA content may impact its mode of action. Temperature most likely exhibited its effects indirectly via altered growth rates and metabolism. Although effects of all three factors and of genistein in particular were only marginal, they highlight a possibility to utilize the genetic capacity of sea bream to improve tissue lipid quality.
Collapse
Affiliation(s)
- Claudia Torno
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
- * E-mail:
| | - Stefanie Staats
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Anna Fickler
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN–CSIC), Madrid, Spain
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Gerald Rimbach
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Carsten Schulz
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
5
|
Fickler A, Staats S, Rimbach G, Schulz C. Screening dietary biochanin A, daidzein, equol and genistein for their potential to increase DHA biosynthesis in rainbow trout (Oncorhynchus mykiss). PLoS One 2019; 14:e0210197. [PMID: 30645603 PMCID: PMC6333376 DOI: 10.1371/journal.pone.0210197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023] Open
Abstract
Plant oil utilization in aquafeeds is still the most practical option, although it decreases the content of the nutritionally highly valuable omega-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) in fish. Phytoestrogens and their metabolites are putatively able to affect genes encoding proteins centrally involved in the biosynthesis of EPA and DHA due to their estrogenic potential. Thus, the aim of the study was to screen the potential of the phytoestrogens to stimulate the biosynthesis of EPA and DHA in rainbow trout (Oncorhynchus mykiss). Additionally, the potential effects on growth performance, nutrient composition and hepatic lipid metabolism in rainbow trout were investigated. For that, a vegetable oil based diet served as a control diet (C) and was supplemented with 15 g/kg dry matter of biochanin A (BA), daidzein (DA), genistein (G) and equol (EQ), respectively. These five diets were fed to rainbow trout (initial body weight 83.3 ± 0.4 g) for 52 days. Growth performance and nutrient composition of whole body homogenates were not affected by the dietary treatments. Furthermore, feeding EQ to rainbow trout significantly increased DHA levels by +8% in whole body homogenates compared to samples of fish fed the diet C. A tendency towards increased DHA levels in whole body homogenates was found for fish fed the diet G. Fish fed diets BA and DA lacked these effects. Moreover, EQ and G fed fish showed significantly decreased hepatic mRNA steady state levels for fatty acyl desaturase 2a (delta-6) (fads2a(d6)). In contrast, carnitine palmitoyl transferases 1 (cpt1) hepatic mRNA steady state levels and hepatic Fads2a(d6) protein contents were not affected by the dietary treatment. In conclusion, when combined with dietary vegetable oils, equol and genistein seem to stimulate the biosynthesis of DHA and thereby increase tissue DHA levels in rainbow trout, however, only to a moderate extent.
Collapse
Affiliation(s)
- Anna Fickler
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
- * E-mail:
| | - Stefanie Staats
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Carsten Schulz
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
| |
Collapse
|
6
|
Torno C, Staats S, Michl SC, de Pascual-Teresa S, Izquierdo M, Rimbach G, Schulz C. Fatty Acid Composition and Fatty Acid Associated Gene-Expression in Gilthead Sea Bream ( Sparus aurata) are Affected by Low-Fish Oil Diets, Dietary Resveratrol, and Holding Temperature. Mar Drugs 2018; 16:E379. [PMID: 30309000 PMCID: PMC6213562 DOI: 10.3390/md16100379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
To sustainably produce marine fish with a high lipid quality rich in omega-3 fatty acids, alternative sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are being identified. Moreover, the use of bioactive compounds that would stimulate the in vivo fatty acid synthesis, such as resveratrol (RV), would reduce the dependence on fish oil in aquafeeds. Gilthead sea bream (Sparus aurata) were fed four experimental diets combining two fish oil levels (6% dry matter (DM); 2% DM) with or without 0.15% DM resveratrol supplementation (F6, F2, F6 + RV, F2 + RV) for two months. Additionally, the fish were challenged either at 19 °C or 23 °C. A higher water temperature promoted their feed intake and growth, resulting in an increased crude lipid content irrespective of dietary treatment. The fatty acid composition of different tissues was significantly affected by the holding temperature and dietary fish oil level. The dietary RV significantly affected the hepatic EPA and DHA content of fish held at 19 °C. The observed effect of RV may be partly explained by alterations of the mRNA steady-state levels of ∆6-desaturase and β-oxidation-related genes. Besides the relevant results concerning RV-mediated regulation of fatty acid synthesis in marine fish, further studies need to be conducted to clarify the potential value of RV to enhance fillet lipid quality.
Collapse
Affiliation(s)
- Claudia Torno
- GMA⁻Gesellschaft für Marine Aquakultur mbH, Hafentörn 3, 25761 Büsum, Germany.
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany.
| | - Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann Rodewald Straße 6, 24118 Kiel, Germany.
| | - Stéphanie Céline Michl
- GMA⁻Gesellschaft für Marine Aquakultur mbH, Hafentörn 3, 25761 Büsum, Germany.
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany.
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN⁻CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Canary Islands, Spain.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann Rodewald Straße 6, 24118 Kiel, Germany.
| | - Carsten Schulz
- GMA⁻Gesellschaft für Marine Aquakultur mbH, Hafentörn 3, 25761 Büsum, Germany.
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany.
| |
Collapse
|
7
|
Torno C, Staats S, Pascual-Teresa SD, Rimbach G, Schulz C. Fatty Acid Profile Is Modulated by Dietary Resveratrol in Rainbow Trout (Oncorhynchus mykiss). Mar Drugs 2017; 15:E252. [PMID: 28800114 PMCID: PMC5577606 DOI: 10.3390/md15080252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
To produce fish of a high quality that are rich in omega-3 fatty acids (n-3 FA) and simultaneously generate more sustainable aquaculture, the combined use of phytochemicals and vegetable oils in fish feed seems to be a promising approach. Resveratrol (RV) potentially induces endogenous fatty acid synthesis, resulting in elevated n-3 FA levels in fish. RV putatively influences ∆6-desaturase, the key enzyme in FA metabolism, and serves as a ligand for PPARα, a transcription factor regulating β-oxidation. Rainbow trout (36.35 ± 0.03 g) were randomly allocated into six groups and fed diets with reduced fish oil levels (F4 = 4%, F2 = 2% and F0 = 0% of dry matter) supplemented with 0.3% (w/w) RV (F4 + RV, F2 + RV and F0 + RV). RV significantly affected FA composition in liver tissue and whole fish homogenates. 20:5n-3 (EPA) and 22:6n-3 (DHA) were significantly increased whereas precursor FA were diminished in fish fed the F2 + RV and F0 + RV diets when compared to F4 + RV and F0. RV significantly elevated ∆6-desaturase protein levels in the livers of F0 + RV fed animals. Hepatic mRNA expression of ∆6-desaturase, PPARα, and its target genes were affected by the dietary fish oil level and not by dietary RV. The results of this study indicated a potential benefit of supplementing RV in fish oil deprived diets elevating n-3 FA levels in rainbow trout.
Collapse
Affiliation(s)
- Claudia Torno
- GMA-Gesellschaft für Marine Aquakultur mbH, Hafentörn 3, 25761 Büsum, Germany.
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany.
| | - Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany.
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany.
| | - Carsten Schulz
- GMA-Gesellschaft für Marine Aquakultur mbH, Hafentörn 3, 25761 Büsum, Germany.
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany.
| |
Collapse
|
8
|
Dev P, Ramappa VK, Gopal R, . S. Analysis of Chemical Composition of Mulberry Silkworm Pupal Oil with Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography/Mass Spectrometry (GC/MS) and its Antimicrobial Property. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajar.2017.108.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Bou M, Østbye TK, Berge GM, Ruyter B. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. Lipids 2017; 52:265-283. [PMID: 28132119 DOI: 10.1007/s11745-017-4234-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1-14C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1-14C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.
Collapse
Affiliation(s)
- Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway. .,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway
| | | | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway.,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
10
|
Zlabek V, Vestergren AS, Trattner S, Wagner L, Pickova J, Zamaratskaia G. Stimulatory effect of sesamin on hepatic cytochrome P450 activities in Atlantic salmon (Salmo salar L.) is not directly associated with expression of genes related to xenobiotic metabolism. Xenobiotica 2015; 45:598-604. [PMID: 25673088 DOI: 10.3109/00498254.2015.1007111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. This study examined hepatic cytochrome P450 (CYP450) response to dietary sesamin in combination with different n-6/n-3 fatty acid ratios in fish diet. Over a period of 4 months, fish were fed seven different experimental diets an n-6/n-3 FA ratio of either 0.5 or 1.0 in combination with two sesamin levels: low sesamin = 1.16 g/kg feed and high sesamin = 5.8 g/kg feed. Control diets did not contain sesamin. 2. The CYP450-associated activities of ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD), pentoxyresorufin O-depentylase (PROD), coumarin hydroxylase (COH), methoxyresorufin O-deethylase (MROD) and p-nitrophenol hydroxylase (PNPH) were significantly induced by dietary sesamin in a dose-related manner. 3. Expressions of the genes CYP1A1, CYP1A3, CYP3A, AhR1α, AhR2β, AhR2δ and PXR involved in the regulation of CYP450 activities, was not the primary source of this induction.
Collapse
Affiliation(s)
- Vladimir Zlabek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice , Vodnany , Czech Republic and
| | | | | | | | | | | |
Collapse
|
11
|
Fink IR, Benard EL, Hermsen T, Meijer AH, Forlenza M, Wiegertjes GF. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp. Mol Immunol 2015; 63:381-93. [DOI: 10.1016/j.molimm.2014.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
|
12
|
Coccia E, Varricchio E, Vito P, Turchini GM, Francis DS, Paolucci M. Fatty acid-specific alterations in leptin, PPARα, and CPT-1 gene expression in the rainbow trout. Lipids 2014; 49:1033-46. [PMID: 25108415 DOI: 10.1007/s11745-014-3939-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/15/2014] [Indexed: 12/17/2022]
Abstract
It is known that fatty acids (FA) regulate lipid metabolism by modulating the expression of numerous genes. In order to gain a better understanding of the effect of individual FA on lipid metabolism related genes in rainbow trout (Oncorhynchus mykiss), an in vitro time-course study was implemented where twelve individual FA (butyric 4:0; caprylic 8:0; palmitic (PAM) 16:0; stearic (STA) 18:0; palmitoleic16:1n-7; oleic 18:1n-9; 11-cis-eicosenoic 20:1n-9; linoleic (LNA) 18:2n-6; α-linolenic (ALA) 18:3n-3; eicosapentenoic (EPA) 20:5n-3; docosahexaenoic (DHA) 22:6n-3; arachidonic (ARA) 20:4n-6) were incubated in rainbow trout liver slices. The effect of FA administration over time was evaluated on the expression of leptin, PPARα and CPT-1 (lipid oxidative related genes). Leptin mRNA expression was down regulated by saturated fatty acids (SFA) and LNA, and was up regulated by monounsaturated fatty acids (MUFA) and long chain PUFA, whilst STA and ALA had no effect. PPARα and CPT-1mRNA expression were up regulated by SFA, MUFA, ALA, ARA and DHA; and down regulated by LNA and EPA. These results suggest that there are individual and specific FA induced modifications of leptin, PPARα and CPT-1 gene expression in rainbow trout, and it is envisaged that such results may provide highly valuable information for future practical applications in fish nutrition.
Collapse
Affiliation(s)
- Elena Coccia
- Department of Sciences and Technologies, Via Port'Arsa, 11, 82100, Benevento, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Buchtová H. Fatty acids profile in mechanically recovered meat from common carp (Cyprinus carpio, L.) and silver carp (Hypophthalmichthys molitrix, Val.). ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201159010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
1H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem 2014; 147:98-105. [DOI: 10.1016/j.foodchem.2013.09.128] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/14/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
|
15
|
Trattner S, Vestergren AS. Tissue distribution of selected micro
RNA
in Atlantic salmon. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sofia Trattner
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences (SLU)SLUUmeåSweden
- Department of Food ScienceSwedish University of Agricultural Sciences (SLU), Uppsala BioCenterUppsalaSweden
| | | |
Collapse
|
16
|
Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-14C] 18:3n-3 and [1-14C] 18:2n-6 in rainbow trout hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:65-72. [DOI: 10.1016/j.cbpb.2013.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
|
17
|
Alhazzaa R, Bridle AR, Carter CG, Nichols PD. Sesamin modulation of lipid class and fatty acid profile in early juvenile teleost, Lates calcarifer, fed different dietary oils. Food Chem 2012; 134:2057-65. [DOI: 10.1016/j.foodchem.2012.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/02/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
|
18
|
Methane carbon supports aquatic food webs to the fish level. PLoS One 2012; 7:e42723. [PMID: 22880091 PMCID: PMC3413669 DOI: 10.1371/journal.pone.0042723] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/10/2012] [Indexed: 01/08/2023] Open
Abstract
Large amounts of the greenhouse gas methane (CH4) are produced by anaerobic mineralization of organic matter in lakes. In spite of extensive freshwater CH4 emissions, most of the CH4 is typically oxidized by methane oxidizing bacteria (MOB) before it can reach the lake surface and be emitted to the atmosphere. In turn, it has been shown that the CH4-derived biomass of MOB can provide the energy and carbon for zooplankton and macroinvertebrates. In this study, we demonstrate the presence of specific fatty acids synthesized by MOB in fish tissues having low carbon stable isotope ratios. Fish species, zooplankton, macroinvertebrates and the water hyacinth Eichhornia crassipes were collected from a shallow lake in Brazil and analyzed for fatty acids (FA) and carbon stable isotope ratios (δ13C). The fatty acids 16∶1ω8c, 16∶1ω8t, 16∶1ω6c, 16∶1ω5t, 18∶1ω8c and 18∶1ω8t were used as signature for MOB. The δ13C ratios varied from −27.7‰ to −42.0‰ and the contribution of MOB FA ranged from 0.05% to 0.84% of total FA. Organisms with higher total content of MOB FAs presented lower δ13C values (i.e. they were more depleted in 13C), while organisms with lower content of MOB signature FAs showed higher δ13C values. An UPGMA cluster analysis was carried out to distinguish grouping of organisms in relation to their MOB FA contents. This combination of stable isotope and fatty acid tracers provides new evidence that assimilation of methane-derived carbon can be an important carbon source for the whole aquatic food web, up to the fish level.
Collapse
|
19
|
Schiller Vestergren A, Wagner L, Pickova J, Rosenlund G, Kamal-Eldin A, Trattner S. Sesamin modulates gene expression without corresponding effects on fatty acids in Atlantic salmon (Salmo salar L.). Lipids 2012; 47:897-911. [PMID: 22790840 DOI: 10.1007/s11745-012-3697-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
This study examined the effects of sesamin inclusion in vegetable oil-based diets fed to Atlantic salmon (Salmo salar L.). The diets used differed in n-6/n-3 fatty acid (FA) ratio (0.5 and 1) and sesamin content (high 5.8 g/kg, low 1.16 g/kg and no sesamin). The oils used in the feeds were a mixture of rapeseed, linseed and palm oil. Fish were fed for 4 months. Fatty acids and expression of hepatic genes involved in transcription, lipid uptake, desaturation, elongation and β-oxidation were measured. No major effects on the percentage of DHA in white muscle, liver triacylglycerol and phospholipid fraction were detected. Genes involved in β-oxidation, elongation and desaturation were affected by sesamin addition. Limited effects were seen on any of the transcription factors tested and no effect was seen on the expression of peroxisome proliferator-activated receptors (PPAR). Expression of both SREBP-1 and SREBP-2 increased with sesamin addition. It was concluded that supplementation of fish feed with a high level of sesamin had a negative effect on the growth rate and live weight and did not alter the proportions of DHA in tissues even though gene expression was affected. Thus, more studies are needed to formulate a diet that would increase the percentage of DHA in fish without negative effects on fish growth.
Collapse
Affiliation(s)
- A Schiller Vestergren
- Department of Food Science, Swedish University of Agricultural Sciences-SLU, Uppsala BioCenter, P.O. Box 7051, 75007 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
This paper presents the results of a study dealing with chemical composition of fillets and fatty acid composition (saturated fatty acid: SFA, monounsaturated fatty acid: MUFA, polyunsaturated fatty acid: PUFA) of lipids. Three groups of the mirror hybrid carp in age of three years: M2 × L15 – the Hungarian Szarvas mirror carp (M2) and the Hungarian hybrid mirror strain (L15), M2 × DOR 70 (the Israeli breed - DOR70), M2 × M72 (Northern mirror carp - M72) were compared with: the pure breed M2 and scaly hybrid ROP × TAT – the Ropsha (ROP) and the Tata (TAT) carp. ROP × TAT hybrid fillets contained (in g·kg-1) more (P < 0.01) dry matter (283.1 ± 23.87) and lipids (99.3 ± 30.60). Fat in all of the monitored carp groups was made up of more than 50% of MUFA (from 51 to 64%), 25 - 29% of SFA and 10 - 22% of PUFA. Fillets of mirror hybrids M2 × DOR70, M2 × M72 and breed M2 contained less lipids (P < 0.01), less MUFAsum (P < 0.01), particularly less oleic acid (C18:1n-9), and more PUFAn-3 (P < 0.01), more eicosapentaenoic acid (C20:5n-3) and docosahexaenic acid (C22:6n-3). The differences in fatty acid profile can be related to the different genetic effects of different groups of common carp.
Collapse
|
21
|
Trattner S, Ruyter B, Ostbye TK, Kamal-Eldin A, Moazzami A, Pan J, Gjoen T, Brännäs E, Zlabek V, Pickova J. Influence of dietary sesamin, a bioactive compound on fatty acids and expression of some lipid regulating genes in Baltic Atlantic salmon (Salmo salar L.) juveniles. Physiol Res 2010; 60:125-37. [PMID: 20945950 DOI: 10.33549/physiolres.932068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The effects of inclusion of sesamin / episesamin in Baltic Atlantic salmon (Salmo salar L.) diets based on vegetable oils were studied. The study was designed as a dose response study with two control diets, one diet based on fish oil (FO) and one diet based on a mixture of linseed and sunflower oil (6:4 by vol.) (MO). As experimental diets three different levels of inclusion of sesamin / episesamin (hereafter named sesamin) to the MO based diet and one diet based on sesame oil and linseed oil (SesO) (1:1 by vol.) were used. The dietary oils were mirrored in the fatty acid profile of the white muscle. Sesamin significantly decreased the levels of 18:3n-3 in the white muscle phospholipid (PL) fraction of all groups fed sesamin, no significant differences were found in the triacylglycerol fraction (TAG). Slightly increased levels of docosahexaenoic acid (22:6n-3, DHA) in PL and TAG were found in some of the sesamin fed groups. Sesamin significantly affected the expression of peroxisome proliferator-activated receptor alpha, scavenger receptor type B and hormone sensitive lipase, in agreement with previous studies on rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) hepatocytes published by our group. No significant effects on toxicological response measured as ethoxyresorufin O-deethylase activity was found. The total cytochrome P450 enzymes were significantly higher in MO 0.29 and SesO group. The amount of alpha- and gamma-tocopherols in liver and the amount of gamma-tocopherol in white muscle were significantly lower in fish fed the FO diet compared to the MO diet, but no difference after inclusion of sesamin was found in this study. Increased inclusion of sesamin increased the levels of sesamin and episesamin in the liver, but did not affect the amounts in white muscle.
Collapse
Affiliation(s)
- S Trattner
- Department of Food Science, SLU, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 2009; 48:355-74. [PMID: 19619583 DOI: 10.1016/j.plipres.2009.07.002] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/13/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022]
Abstract
There is little doubt regarding the essential nature of alpha-linolenic acid (ALA), yet the capacity of dietary ALA to maintain adequate tissue levels of long chain n-3 fatty acids remains quite controversial. This simple point remains highly debated despite evidence that removal of dietary ALA promotes n-3 fatty acid inadequacy, including that of docosahexaenoic acid (DHA), and that many experiments demonstrate that dietary inclusion of ALA raises n-3 tissue fatty acid content, including DHA. Herein we propose, based upon our previous work and that of others, that ALA is elongated and desaturated in a tissue-dependent manner. One important concept is to recognize that ALA, like many other fatty acids, rapidly undergoes beta-oxidation and that the carbons are conserved and reused for synthesis of other products including cholesterol and fatty acids. This process and the differences between utilization of dietary DHA or liver-derived DHA as compared to ALA have led to the dogma that ALA is not a useful fatty acid for maintaining tissue long chain n-3 fatty acids, including DHA. Herein, we propose that indeed dietary ALA is a crucial dietary source of n-3 fatty acids and its dietary inclusion is critical for maintaining tissue long chain n-3 levels.
Collapse
|
23
|
Trattner S, Kamal-Eldin A, Brännäs E, Moazzami A, Zlabek V, Larsson P, Ruyter B, Gjøen T, Pickova J. Sesamin Supplementation Increases White Muscle Docosahexaenoic Acid (DHA) Levels in Rainbow Trout (Oncorhynchus mykiss) Fed High Alpha-Linolenic Acid (ALA) Containing Vegetable Oil: Metabolic Actions. Lipids 2008; 43:989-97. [DOI: 10.1007/s11745-008-3228-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
|