1
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
2
|
Cheng X, Pang Y, Ban Y, Cui S, Shu T, Lv B, Li C. Application of multiple strategies to enhance oleanolic acid biosynthesis by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2024; 401:130716. [PMID: 38641301 DOI: 10.1016/j.biortech.2024.130716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Oleanolic acid and its derivatives are widely used in the pharmaceutical, agricultural, cosmetic and food industries. Previous studies have shown that oleanolic acid production levels in engineered cell factories are low, which is why oleanolic acid is still widely extracted from traditional medicinal plants. To construct a highly efficient oleanolic acid production strain, rate-limiting steps were regulated by inducible promoters and the expression of key genes in the oleanolic acid synthetic pathway was enhanced. Subsequently, precursor pool expansion, pathway refactoring and diploid construction were considered to harmonize cell growth and oleanolic acid production. The multi-strategy combination promoted oleanolic acid production of up to 4.07 g/L in a 100 L bioreactor, which was the highest level reported.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yali Ban
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Cui
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Shu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Wang M, Wu S, Ding H, Wang M, Ma J, Xiao J, Wang B, Bao Z, Hu J. Dietary antarctic krill improves antioxidant capacity, immunity and reduces lipid accumulation, insights from physiological and transcriptomic analysis of Plectropomus leopardus. BMC Genomics 2024; 25:210. [PMID: 38408914 PMCID: PMC10895837 DOI: 10.1186/s12864-024-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jiayi Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jie Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| |
Collapse
|
4
|
Kojima M, Degawa M. Causes of Sex Differences in Serum Cholesterol and Triglyceride Levels in Meishan Pigs. Biol Pharm Bull 2024; 47:606-610. [PMID: 38462492 DOI: 10.1248/bpb.b23-00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
To clarify the causes of sex differences (male < female) in the serum total cholesterol (TCHO) and triglyceride (TG) levels in Meishan pigs, we examined the sex differences in mRNA levels of key hepatic enzymes involved in the biosynthesis/metabolism of cholesterol and TG using real-time RT-PCR. There were no sex differences in mRNA levels of 3-hydroxy-3-methylglutaryl-CoA reductase and CYP51A1 for cholesterol biosynthesis, or of the rate-limiting enzyme CYP7A1 for bile acid synthesis from cholesterol. By contrast, sex differences (male < female) were observed in mRNA levels of glycerol-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme for TG biosynthesis. However, the sex differences in mRNA levels of carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA dehydrogenase long chain (ACADL), key enzymes for the oxidation of the fatty acids that are structural components of TG, were the opposite (male > female). Castration of male pigs led to an increase in the mRNA level of GPAT1 and decreases in those of CPT1A and ACADL. Furthermore, testosterone propionate (TP)-treatment of castrated males and intact females restored and changed, respectively, these mRNA levels to those of intact males. Notably, castration and TP-treatment increased and decreased, respectively, serum and hepatic TG levels. These findings suggest that sex differences in the serum and hepatic TG levels in Meishan pigs are closely correlated with differences in testosterone-associated mRNA expression levels of the key enzymes (GPAT1, CPT1A, and ACADL) involved in the TG biosynthesis process, although no causes of sex differences in serum and hepatic TCHO levels could be found.
Collapse
Affiliation(s)
- Misaki Kojima
- Meat Animal Biosystem Group, Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO)
| | - Masakuni Degawa
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Warren A, Porter RM, Reyes-Castro O, Ali MM, Marques-Carvalho A, Kim HN, Gatrell LB, Schipani E, Nookaew I, O'Brien CA, Morello R, Almeida M. The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice. Nat Commun 2023; 14:3616. [PMID: 37330524 PMCID: PMC10276814 DOI: 10.1038/s41467-023-39392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
NAD is an essential co-factor for cellular energy metabolism and multiple other processes. Systemic NAD+ deficiency has been implicated in skeletal deformities during development in both humans and mice. NAD levels are maintained by multiple synthetic pathways but which ones are important in bone forming cells is unknown. Here, we generate mice with deletion of Nicotinamide Phosphoribosyltransferase (Nampt), a critical enzyme in the NAD salvage pathway, in all mesenchymal lineage cells of the limbs. At birth, NamptΔPrx1 exhibit dramatic limb shortening due to death of growth plate chondrocytes. Administration of the NAD precursor nicotinamide riboside during pregnancy prevents the majority of in utero defects. Depletion of NAD post-birth also promotes chondrocyte death, preventing further endochondral ossification and joint development. In contrast, osteoblast formation still occurs in knockout mice, in line with distinctly different microenvironments and reliance on redox reactions between chondrocytes and osteoblasts. These findings define a critical role for cell-autonomous NAD homeostasis during endochondral bone formation.
Collapse
Affiliation(s)
- Aaron Warren
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ryan M Porter
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Olivia Reyes-Castro
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Mohsin Ali
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Landon B Gatrell
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roy Morello
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Ren Z, Xu Y, Li T, Sun W, Tang Z, Wang Y, Zhou K, Li J, Ding Q, Liang K, Wu L, Yin Y, Sun Z. NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. ANIMAL NUTRITION 2022; 10:360-371. [PMID: 35949199 PMCID: PMC9356074 DOI: 10.1016/j.aninu.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
|
7
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Zheng-hong Qin
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Lipid metabolism in tumor microenvironment: novel therapeutic targets. Cancer Cell Int 2022; 22:224. [PMID: 35790992 PMCID: PMC9254539 DOI: 10.1186/s12935-022-02645-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Bioactive lipid molecules have been proposed to play important roles linking obesity/metabolic syndrome and cancers. Studies reveal that aberrant lipid metabolic signaling can reprogram cancer cells and non-cancer cells in the tumor microenvironment, contributing to cancer initiation, progression, metastasis, recurrence, and poor therapeutic response. Existing evidence indicates that controlling lipid metabolism can be a potential strategy for cancer prevention and therapy. By reviewing the current literature on the lipid metabolism in various cancers, we summarized major lipid molecules including fatty acids and cholesterol as well as lipid droplets and discussed their critical roles in cancer cells and non-cancer in terms of either promoting- or anti-tumorigenesis. This review provides an overview of the lipid molecules in cellular entities and their tumor microenvironment, adding to the existing knowledge with lipid metabolic reprogramming in immune cells and cancer associated cells. Comprehensive understanding of the regulatory role of lipid metabolism in cellular entities and their tumor microenvironment will provide a new direction for further studies, in a shift away from conventional cancer research. Exploring the lipid-related signaling targets that drive or block cancer development may lead to development of novel anti-cancer strategies distinct from traditional approaches for cancer prevention and treatment.
Collapse
|
9
|
Polymyxin Induces Significant Transcriptomic Perturbations of Cellular Signalling Networks in Human Lung Epithelial Cells. Antibiotics (Basel) 2022; 11:antibiotics11030307. [PMID: 35326770 PMCID: PMC8944768 DOI: 10.3390/antibiotics11030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Inhaled polymyxins are increasingly used to treat pulmonary infections caused by multidrug-resistant Gram-negative pathogens. We have previously shown that apoptotic pathways, autophagy and oxidative stress are involved in polymyxin-induced toxicity in human lung epithelial cells. In the present study, we employed human lung epithelial cells A549 treated with polymyxin B as a model to elucidate the complex interplay of multiple signalling networks underpinning cellular responses to polymyxin toxicity. Polymyxin B induced toxicity (1.0 mM, 24 h) in A549 cells was assessed by flow cytometry and transcriptomics was performed using microarray. Polymyxin B induced cell death was 19.0 ± 4.2% at 24 h. Differentially expressed genes (DEGs) between the control and polymyxin B treated cells were identified with Student’s t-test. Pathway analysis was conducted with KEGG and Reactome and key hub genes related to polymyxin B induced toxicity were examined using the STRING database. In total we identified 899 DEGs (FDR < 0.01), KEGG and Reactome pathway analyses revealed significantly up-regulated genes related to cell cycle, DNA repair and DNA replication. NF-κB and nucleotide-binding oligomerization domain-like receptor (NOD) signalling pathways were identified as markedly down-regulated genes. Network analysis revealed the top 5 hub genes (i.e., degree) affected by polymyxin B treatment were PLK1(48), CDK20 (46), CCNA2 (42), BUB1 (40) and BUB1B (37). Overall, perturbations of cell cycle, DNA damage and pro-inflammatory NF-κB and NOD-like receptor signalling pathways play key roles in polymyxin-induced toxicity in human lung epithelial cells. Noting that NOD-like receptor signalling represents a group of key sensors for microorganisms and damage in the lung, understanding the mechanism of polymyxin-induced pulmonary toxicity will facilitate the optimisation of polymyxin inhalation therapy in patients.
Collapse
|
10
|
Chaturvedi S, Bhattacharya A, Rout PK, Nain L, Khare SK. An Overview of Enzymes and Rate-Limiting Steps Responsible for Lipid Production in Oleaginous Yeast. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Prasant K. Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Lata Nain
- Division of Microbiology, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| |
Collapse
|
11
|
Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. NRF2: KEAPing Tumors Protected. Cancer Discov 2022; 12:625-643. [PMID: 35101864 DOI: 10.1158/2159-8290.cd-21-0922] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Makiko Hayashi
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Anastasia-Maria Zavitsanou
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Thales Papagiannakopoulos
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.
| |
Collapse
|
12
|
Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis. Mol Psychiatry 2022; 27:490-501. [PMID: 33820938 PMCID: PMC8490477 DOI: 10.1038/s41380-021-01074-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/01/2023]
Abstract
Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198.,Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Marija Heffer
- J. J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Department of Medical Biology and Genetics, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Károly Mirnics
- Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
13
|
Barros MPD, Bachi ALL, Santos JDMBD, Lambertucci RH, Ishihara R, Polotow TG, Caldo-Silva A, Valente PA, Hogervorst E, Furtado GE. The poorly conducted orchestra of steroid hormones, oxidative stress and inflammation in frailty needs a maestro: Regular physical exercise. Exp Gerontol 2021; 155:111562. [PMID: 34560197 DOI: 10.1016/j.exger.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
This review outlines the various factors associated with unhealthy aging which includes becoming frail and dependent. With many people not engaging in recommended exercise, facilitators and barriers to engage with exercise must be investigated to promote exercise uptake and adherence over the lifespan for different demographics, including the old, less affluent, women, and those with different cultural-ethnic backgrounds. Governmental and locally funded public health messages and environmental facilitation (gyms, parks etc.) can play an important role. Studies have shown that exercise can act as a conductor to balance oxidative stress, immune and endocrine functions together to promote healthy aging and reduce the risk for age-related morbidities, such as cardiovascular disease and atherosclerosis, and promote cognition and mood over the lifespan. Like a classic symphony orchestra, consisting of four groups of related musical instruments - the woodwinds, brass, percussion, and strings - the aging process should also perform in harmony, with compassion, avoiding the aggrandizement of any of its individual parts during the presentation. This review discusses the wide variety of molecular, cellular and endocrine mechanisms (focusing on the steroid balance) underlying this process and their interrelationships.
Collapse
Affiliation(s)
- Marcelo Paes de Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil.
| | - André Luís Lacerda Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | | | - Rafael Ishihara
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Tatiana Geraldo Polotow
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil
| | - Adriana Caldo-Silva
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Pedro Afonso Valente
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Eef Hogervorst
- Applied Cognitive Research National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal; Institute Polytechnic of Maia, Porto, Portugal; University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal.
| |
Collapse
|
14
|
He Y, Yu Y, Li Y, Duan W, Sun Z, Yang J, Kastin AJ, Pan W, Zhang Y, Wang K. Phenotypic Resemblance to Neuropsychiatric Disorder and Altered mRNA Profiles in Cortex and Hippocampus Underlying IL15Rα Knockout. Front Neurosci 2021; 14:582279. [PMID: 33613171 PMCID: PMC7887313 DOI: 10.3389/fnins.2020.582279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Background Previous studies of the functions of IL15Rα have been limited to immune activities and skeletal muscle development. Immunological factors have been identified as one of the multiple causes of psychosis, and neurological symptoms have been described in IL15Rα knockout (KO) mice. Seeking to explore possible mechanisms for this in the IL15Rα-/- mouse brain, we analyzed gene expression patterns in the cortex and hippocampus using the RNA-seq technique. Methods IL15Rα KO mice were generated and littermate wildtype (WT) mice were used as a control group. A Y-maze was used to assess behavior differences between the two groups. The cortex and hippocampus of 3-month-old male mice were prepared and RNA-seq and transcriptome analysis were performed by gene set enrichment analysis (GSEA). Results Compared with the WT group, IL15Rα KO animals showed higher speed in the novel arm and more entrance frequency in the old arm in the Y-maze experiment. GSEA indicated that 18 pathways were downregulated and 13 pathways upregulated in both cortex and hippocampus from the GO, KEGG, and Hallmark gene sets. The downregulated pathways formed three clusters: respiratory chain and electron transport, regulation of steroid process, and skeletal muscle development. Conclusion IL15Rα KO mice exhibit altered expression of multiple pathways, which could affect many functions of the brain. Lipid biosynthesis and metabolism in the central nervous system (CNS) should be investigated to provide insights into the effect of IL15Rα on psychosis in this murine model.
Collapse
Affiliation(s)
- Yi He
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Gastrointestinal Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Weihong Pan
- BioPotentials Consult, Sedona, AZ, United States
| | - Yan Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Chevallier V, Schoof EM, Malphettes L, Andersen MR, Workman CT. Characterization of glutathione proteome in CHO cells and its relationship with productivity and cholesterol synthesis. Biotechnol Bioeng 2020; 117:3448-3458. [PMID: 32662871 PMCID: PMC7689765 DOI: 10.1002/bit.27495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 01/05/2023]
Abstract
Glutathione (GSH) plays a central role in the redox balance maintenance in mammalian cells. Previous studies of industrial Chinese hamster ovary cell lines have demonstrated a relationship between GSH metabolism and clone productivity. However, a thorough investigation is required to understand this relationship and potentially highlight new targets for cell engineering. In this study, we have modulated the GSH intracellular content of an industrial cell line under bioprocess conditions to further elucidate the role of the GSH synthesis pathway. Two strategies were used: the variation of cystine supply and the direct inhibition of the GSH synthesis using buthionine sulfoximine (BSO). Over time of the bioprocess, a correlation between intracellular GSH and product titer has been observed. Analysis of metabolites uptake/secretion rates and proteome comparison between BSO‐treated cells and nontreated cells has highlighted a slowdown of the tricarboxylic acid cycle leading to a secretion of lactate and alanine in the extracellular environment. Moreover, an adaptation of the GSH‐related proteome has been observed with an upregulation of the regulatory subunit of glutamate–cysteine ligase and a downregulation of a specific GSH transferase subgroup, the Mu family. Surprisingly, the main impact of BSO treatment was observed on a global downregulation of the cholesterol synthesis pathways. As cholesterol is required for protein secretion, it could be the missing piece of the puzzle to finally elucidate the link between GSH synthesis and productivity.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Mikael R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
16
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
17
|
The shape of human squalene epoxidase expands the arsenal against cancer. Nat Commun 2019; 10:888. [PMID: 30792392 PMCID: PMC6384927 DOI: 10.1038/s41467-019-08866-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/04/2019] [Indexed: 01/31/2023] Open
Abstract
Squalene epoxidase (also known as squalene monooxygenase, EC 1.14.99.7) is a key rate-limiting enzyme in cholesterol biosynthesis. Anil Padyana and colleagues report the long awaited structure of human squalene epoxidase (SQLE). They solved the crystal structure of the catalytic domain of human SQLE alone and in complex with two similar pharmacological inhibitors and elucidate their mechanism of action. SQLE is the target of fungicides and of increasing interest in human health and disease, particularly as a new anti-cancer target. Indeed, in a companion paper, Christopher Mahoney and colleagues performed an inhibitor screen with cancer cell lines and identified SQLE as an unique vulnerability in a subset of neuroendocrine tumours, where SQLE inhibition caused a toxic accumulation of the substrate squalene. The SQLE structure will facilitate the development of improved inhibitors. Here, we comment on these two studies in the wider context of the field and discuss possible future directions.
Collapse
|
18
|
Zhou J, Zhang Y, Hu T, Su P, Zhang Y, Liu Y, Huang L, Gao W. Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. Int J Biol Macromol 2018; 120:203-212. [DOI: 10.1016/j.ijbiomac.2018.08.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
|
19
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
20
|
Abstract
SIGNIFICANCE Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease. CRITICAL ISSUES Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive. FUTURE DIRECTIONS As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - William M Oldham
- 2 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,3 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
21
|
Goetzman ES, Prochownik EV. The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front Endocrinol (Lausanne) 2018; 9:129. [PMID: 29706933 PMCID: PMC5907532 DOI: 10.3389/fendo.2018.00129] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022] Open
Abstract
That cancer cells show patterns of metabolism different from normal cells has been known for over 50 years. Yet, it is only in the past decade or so that an appreciation of the benefits of these changes has begun to emerge. Altered cancer cell metabolism was initially attributed to defective mitochondria. However, we now realize that most cancers do not have mitochondrial mutations and that normal cells can transiently adopt cancer-like metabolism during periods of rapid proliferation. Indeed, an encompassing, albeit somewhat simplified, conceptual framework to explain both normal and cancer cell metabolism rests on several simple premises. First, the metabolic pathways used by cancer cells and their normal counterparts are the same. Second, normal quiescent cells use their metabolic pathways and the energy they generate largely to maintain cellular health and organelle turnover and, in some cases, to provide secreted products necessary for the survival of the intact organism. By contrast, undifferentiated cancer cells minimize the latter functions and devote their energy to producing the anabolic substrates necessary to maintain high rates of unremitting cellular proliferation. Third, as a result of the uncontrolled proliferation of cancer cells, a larger fraction of the metabolic intermediates normally used by quiescent cells purely as a source of energy are instead channeled into competing proliferation-focused and energy-consuming anabolic pathways. Fourth, cancer cell clones with the most plastic and rapidly adaptable metabolism will eventually outcompete their less well-adapted brethren during tumor progression and evolution. This attribute becomes increasingly important as tumors grow and as their individual cells compete in a constantly changing and inimical environment marked by nutrient, oxygen, and growth factor deficits. Here, we review some of the metabolic pathways whose importance has gained center stage for tumor growth, particularly those under the control of the c-Myc (Myc) oncoprotein. We discuss how these pathways differ functionally between quiescent and proliferating normal cells, how they are kidnapped and corrupted during the course of transformation, and consider potential therapeutic strategies that take advantage of common features of neoplastic and metabolic disorders.
Collapse
Affiliation(s)
- Eric S. Goetzman
- Division of Medical Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States
- *Correspondence: Edward V. Prochownik,
| |
Collapse
|
22
|
Lee R, Fischer R, Charles PD, Adlam D, Valli A, Di Gleria K, Kharbanda RK, Choudhury RP, Antoniades C, Kessler BM, Channon KM. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin Proteomics 2017. [PMID: 28642677 PMCID: PMC5477097 DOI: 10.1186/s12014-017-9157-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background
Atherosclerotic plaque rupture is the culprit event which underpins most acute vascular syndromes such as acute myocardial infarction. Novel biomarkers of plaque rupture could improve biological understanding and clinical management of patients presenting with possible acute vascular syndromes but such biomarker(s) remain elusive. Investigation of biomarkers in the context of de novo plaque rupture in humans is confounded by the inability to attribute the plaque rupture as the source of biomarker release, as plaque ruptures are typically associated with prompt down-stream events of myocardial necrosis and systemic inflammation. Methods We developed a novel approach to identify potential biomarkers of plaque rupture by integrating plaque imaging, using optical coherence tomography, with both plaque and plasma proteomic analysis in a human model of angioplasty-induced plaque disruption. Results We compared two pairs of coronary plaque debris, captured by a FilterWire Device, and their corresponding control samples and found matrix metalloproteinase 9 (MMP9) to be significantly enriched in plaque. Plaque contents, as defined by optical coherence tomography, affect the systemic changes of MMP9. Disruption of lipid-rich plaque led to prompt elevation of plasma MMP9, whereas disruption of non-lipid-rich plaque resulted in delayed elevation of plasma MMP9. Systemic MMP9 elevation is independent of the associated myocardial necrosis and systemic inflammation (measured by Troponin I and C-reactive protein, respectively). This information guided the selection of a subset of subjects of for further label free proteomics analysis by liquid chromatography tandem mass spectrometry (LC–MS/MS). We discovered five novel, plaque-enriched proteins (lipopolysaccharide binding protein, Annexin A5, eukaryotic translocation initiation factor, syntaxin 11, cytochrome B5 reductase 3) to be significantly elevated in systemic circulation at 5 min after plaque disruption. Conclusion This novel approach for biomarker discovery in human coronary artery plaque disruption can identify new biomarkers related to human coronary artery plaque composition and disruption. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9157-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regent Lee
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Adlam
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Alessandro Valli
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katalin Di Gleria
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh K Kharbanda
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.,Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
23
|
Herrera-Cruz MS, Simmen T. Of yeast, mice and men: MAMs come in two flavors. Biol Direct 2017; 12:3. [PMID: 28122638 PMCID: PMC5267431 DOI: 10.1186/s13062-017-0174-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
The past decade has seen dramatic progress in our understanding of membrane contact sites (MCS). Important examples of these are endoplasmic reticulum (ER)-mitochondria contact sites. ER-mitochondria contacts have originally been discovered in mammalian tissue, where they have been designated as mitochondria-associated membranes (MAMs). It is also in this model system, where the first critical MAM proteins have been identified, including MAM tethering regulators such as phospho-furin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2. However, the past decade has seen the discovery of the MAM also in the powerful yeast model system Saccharomyces cerevisiae. This has led to the discovery of novel MAM tethers such as the yeast ER-mitochondria encounter structure (ERMES), absent in the mammalian system, but whose regulators Gem1 and Lam6 are conserved. While MAMs, sometimes referred to as mitochondria-ER contacts (MERCs), regulate lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy and apoptosis, not all of these functions exist in both systems or operate differently. This biological difference has led to puzzling discrepancies on findings obtained in yeast or mammalian cells at the moment. Our review aims to shed some light onto mechanistic differences between yeast and mammalian MAM and their underlying causes. Reviewers: This article was reviewed by Paola Pizzo (nominated by Luca Pellegrini), Maya Schuldiner and György Szabadkai (nominated by Luca Pellegrini).
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada.
| |
Collapse
|
24
|
Misslinger M, Gsaller F, Hortschansky P, Müller C, Bracher F, Bromley MJ, Haas H. The cytochromeb5CybE is regulated by iron availability and is crucial for azole resistance inA. fumigatus. Metallomics 2017; 9:1655-1665. [DOI: 10.1039/c7mt00110j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 enzymes (P450) play essential roles in redox metabolism in all domains of life including detoxification reactions and sterol biosynthesis.
Collapse
Affiliation(s)
- Matthias Misslinger
- Division of Molecular Biology
- Biocenter
- Medical University of Innsbruck
- 6020 Innsbruck
- Austria
| | - Fabio Gsaller
- Manchester Fungal Infection Group
- Institute of Inflammation and Repair
- University of Manchester
- Manchester
- UK
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
- Jena
- Germany
| | - Christoph Müller
- Department of Pharmacy
- Center for Drug Research
- Ludwig-Maximilians-University Munich
- Munich
- Germany
| | - Franz Bracher
- Department of Pharmacy
- Center for Drug Research
- Ludwig-Maximilians-University Munich
- Munich
- Germany
| | - Michael J. Bromley
- Manchester Fungal Infection Group
- Institute of Inflammation and Repair
- University of Manchester
- Manchester
- UK
| | - Hubertus Haas
- Division of Molecular Biology
- Biocenter
- Medical University of Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
25
|
Over Six Decades of Discovery and Characterization of the Architecture at Mitochondria-Associated Membranes (MAMs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:13-31. [PMID: 28815519 DOI: 10.1007/978-981-10-4567-7_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of proteins regulating ER-mitochondria tethering including phosphofurin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2 has pushed contact sites between the endoplasmic reticulum (ER) and mitochondria into the spotlight of cell biology. While the field is developing rapidly and controversies have come and gone multiple times during its history, it is sometimes overlooked that significant research has been done decades ago with the original discovery of these structures in the 1950s and the first characterization of their function (and coining of the term mitochondria-associated membrane, MAM) in 1990. Today, an ever-increasing array of proteins localize to the MAM fraction of the endoplasmic reticulum (ER) to regulate the interaction of this organelle with mitochondria. These mitochondria-ER contacts, sometimes referred to as MERCs, regulate a multitude of biological functions, including lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy, mitochondrial structure, and apoptosis.
Collapse
|