1
|
Sherwood TA, Medvecky R, Miller C, Wetzel DL. Biochemical, molecular, and physiological assessments of crude oil dietary exposure in sub-adult red drum (Sciaenops ocellatus). Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109864. [PMID: 38378123 DOI: 10.1016/j.cbpc.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA.
| | - Rebecca Medvecky
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Christelle Miller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Dana L Wetzel
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| |
Collapse
|
2
|
Honzíková T, Agbaga MP, Anderson RE, Brush R, Ahmad M, Musílková L, Šejstalová K, Alishevich K, Beneš R, Šimicová P, Berčíková M, Filip V, Kyselka J. Novel Approaches for Elongation of Fish Oils into Very-Long-Chain Polyunsaturated Fatty Acids and Their Enzymatic Interesterification into Glycerolipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17909-17923. [PMID: 37947776 PMCID: PMC10682991 DOI: 10.1021/acs.jafc.3c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Elongation of the Very-Long-Chain Fatty Acids-4 (ELOVL4) enzyme that is expressed in neuronal tissues, sperm, and testes mediates biosynthesis of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) from dietary long chain PUFAs (LC-PUFAs). The VLC-PUFAs are critical for neuronal and reproductive function. Therefore, mutations in ELOVL4 that affect VLC-PUFA biosynthesis contribute to retinal degenerative diseases including Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3). Recent studies have also shown not only a depletion of retinal VLC-PUFAs with normal aging but also a more significant loss of VLC-PUFAs in donor eyes of patients with age-related macular degeneration (AMD). However, currently, there are no natural sources of VLC-PUFAs to be evaluated as dietary supplements for the attenuation of retinal degeneration in animal models of STGD3. Here, we report the development of a novel chemical approach for elongation of eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids from fish oils by 6 carbon atoms to make a unique group of VLC-PUFAs, namely all-cis-hexacosa-11,14,17,20,23-pentaenoic acids (C26:5 n-3) and all-cis-octacosa-10,13,16,19,22,25-hexaenoic acids (C28:6 n-3). The three-step elongation approach that we report herein resulted in a good overall yield of up to 20.2%. This more sustainable approach also resulted in improved functional group compatibility and minimal impact on the geometrical integrity of the all-cis double bond system of the VLC-PUFAs. In addition, we also successfully used commercial deep-sea fish oil concentrate as an inexpensive material for the C6 elongation of fish oil LC-PUFAs into VLC-PUFAs, which resulted in the making of gram scales of VLC-PUFAs with an even higher isolation yield of 31.0%. The quality of fish oils and the content of oxidized lipids were key since both strongly affected the activity of the PEPPSI-IPr catalyst and ultimately the yield of coupling reactions. Downstream enzymatic interesterification was used for the first time to prepare structured glycerolipids enriched with VLC-PUFAs that could be evaluated in vivo to determine absorption and transport to target tissues relative to those of the free fatty acid forms. It turned out that in the synthesis of structured triacylglycerols and glycerophospholipids with VLC-PUFAs, the polarity of the immobilized lipase carrier and its humidity were essential.
Collapse
Affiliation(s)
- Tereza Honzíková
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Martin-Paul Agbaga
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Robert Eugene Anderson
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Richard Brush
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Mohiuddin Ahmad
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Lenka Musílková
- The
Department of Chemistry of Natural Compounds, Faculty of Food and
Biochemical Technology, University of Chemistry
and Technology, Technická
5, 166 28 Prague, Czechia
| | - Karolína Šejstalová
- The
Department of Chemistry of Natural Compounds, Faculty of Food and
Biochemical Technology, University of Chemistry
and Technology, Technická
5, 166 28 Prague, Czechia
| | - Katsiaryna Alishevich
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Radek Beneš
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Petra Šimicová
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Markéta Berčíková
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Vladimír Filip
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Jan Kyselka
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| |
Collapse
|
3
|
Poad BLJ, Jekimovs LJ, Young RSE, Wongsomboon P, Marshall DL, Hansen FKM, Fulloon T, Pfrunder MC, Dodgen T, Ritchie M, Wong SCC, Blanksby SJ. Revolutions in Lipid Isomer Resolution: Application of Ultrahigh-Resolution Ion Mobility to Reveal Lipid Diversity. Anal Chem 2023; 95:15917-15923. [PMID: 37847864 DOI: 10.1021/acs.analchem.3c02658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Many families of lipid isomers remain unresolved by contemporary liquid chromatography-mass spectrometry approaches, leading to a significant underestimation of the structural diversity within the lipidome. While ion mobility coupled to mass spectrometry has provided an additional dimension of lipid isomer resolution, some isomers require a resolving power beyond the capabilities of conventional platforms. Here, we present the application of high-resolution traveling-wave ion mobility for the separation of lipid isomers that differ in (i) the location of a single carbon-carbon double bond, (ii) the stereochemistry of the double bond (cis or trans), or, for glycerolipids, (iii) the relative substitution of acyl chains on the glycerol backbone (sn-position). Collisional activation following mobility separation allowed identification of the carbon-carbon double-bond position and sn-position, enabling confident interpretation of variations in mobility peak abundance. To demonstrate the applicability of this method, double-bond and sn-position isomers of an abundant phosphatidylcholine composition were resolved in extracts from a prostate cancer cell line and identified by comparison to pure isomer reference standards, revealing the presence of up to six isomers. These findings suggest that ultrahigh-resolution ion mobility has broad potential for isomer-resolved lipidomics and is attractive to consider for future integration with other modes of ion activation, thereby bringing together advanced orthogonal separations and structure elucidation to provide a more complete picture of the lipidome.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Lachlan J Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Felicia K M Hansen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Therese Fulloon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | | | | | | | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
4
|
Illijas MI, Kim GW, Honda M, Itabashi Y. Characteristics of fatty acids from the red alga Kappaphycus alvarezii (Doty) Doty (Rhodophyta, Solieriaceae). ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, Blanksby SJ. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal Chem 2022; 94:16180-16188. [DOI: 10.1021/acs.analchem.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reuben S. E. Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Clare L. Flakelar
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane 4014, Queensland, Australia
| | - Venkateswara R. Narreddula
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Lachlan J. Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jan P. Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Berwyck L. J. Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Stephen J. Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| |
Collapse
|
6
|
Abuzaytoun R, Budge SM, Xia W, MacKinnon S. Unusual Ether Lipids and Branched Chain Fatty Acids in Sea Cucumber ( Cucumaria frondosa) Viscera and Their Seasonal Variation. Mar Drugs 2022; 20:435. [PMID: 35877727 PMCID: PMC9318488 DOI: 10.3390/md20070435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The sea cucumber, Cucumaria frondosa, is harvested primarily for its muscular bands and body wall. Development of a nutraceutical product based on lipid recovered from its viscera would give commercial value to the entire organism; however, such development requires knowledge of the lipid and fatty acid (FA) profiles of the viscera. Here, we describe the lipid and FA composition of viscera recovered from C. frondosa harvested in coastal waters in the northwest Atlantic, taking into account variation due to harvest season. We found highest lipid content at ~29% in winter, with diacylglyceryl ethers (DAGE) comprising ~55% of the total lipid mass and triacylglycerols (TAG), phospholipids (PL) and monoacylglycerol ethers (MAGE) at 5-25% each. The branched chain FA, 12-methyltetradecanoic acid (12-MTA), represented 42% of total FA mass in DAGE. In summer, lipid content was lower at 24% and TAG was the dominate lipid, with proportions more than double that found in winter (45% vs. 20%); DAGE in summer dropped to ~30% of total lipids. In TAG, 12-MTA was much lower than found in DAGE in winter, at only 10% but eicosapentaenoic acid (EPA) content was ~20%, which brought the total EPA% to 28% of total FA-the highest among all three seasons. There was little effect of season on MAGE or PL proportions. These data can help harvesters maximize catch efforts in terms of lipid yield and profile.
Collapse
Affiliation(s)
- Reem Abuzaytoun
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada
| | - Suzanne M. Budge
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Wei Xia
- Mara Renewables Corporation, Dartmouth, NS B2Y 4T6, Canada;
| | - Shawna MacKinnon
- Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada;
| |
Collapse
|
7
|
Xu L, Guan H, Liu L, Mao S, Feng J, Su Z, Liu L. Determining the double-bond positions of monounsaturated compounds in the alcohol fraction in seep carbonate. J Chromatogr A 2022; 1672:463009. [DOI: 10.1016/j.chroma.2022.463009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
8
|
Structural Characterization of Mono- and Dimethylphosphatidylethanolamines from Various Organisms Using a Complex Analytical Strategy Including Chiral Chromatography. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two minor phospholipids, i.e., mono- and/or dimethylphosphatidylethanolamines, are widespread in many organisms, from bacteria to higher plants and animals. A molecular mixture of methyl-PE and dimethyl-PE was obtained from total lipids by liquid chromatography and further identified by mass spectrometry. Total methyl-PE and dimethyl-PE were cleaved by phospholipase C, and the resulting diacylglycerols, in the form of acetyl derivatives, were separated into alkyl-acyl, alkenyl-acyl, and diacylglycerols. Reversed-phase LC/MS allowed dozens of molecular species to be identified and further analyzed. This was performed on a chiral column, and identification by tandem positive ESI revealed that diacyl derivatives from all four bacteria were mixtures of both R and S enantiomers. The same applied to alkenyl-acyl derivatives of anaerobic bacteria. Analysis thus confirmed that some bacteria biosynthesize phospholipids having both sn-glycerol-3-phosphate and sn-glycerol-1-phosphate as precursors. These findings were further supported by data already published in GenBank. The use of chiral chromatography made it possible to prove that both enantiomers of glycerol phosphate of some molecular species of mono- and dimethylphosphatidylethanolamines are present. The result of the analysis can be interpreted that the cultured bacteria do not have homochiral membranes but, on the contrary, have an asymmetric, i.e., heterochiral membranes.
Collapse
|
9
|
Occurrence of Cis-11,12-Methylene-Hexadecanoic Acid in the Red Alga Solieria pacifica (Yamada) Yoshida. Molecules 2021; 26:molecules26082286. [PMID: 33920883 PMCID: PMC8071341 DOI: 10.3390/molecules26082286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Fatty acids in marine algae have attracted the attention of natural chemists because of their biological activity. The fatty acid compositions of the Solieriaceae families (Rhodophyceae, Gaigartinales) provide interesting information that unusual cyclic fatty acids have been occasionally found. A survey was conducted to profile the characteristic fatty acid composition of the red alga Solieria pacifica (Yamada) Yoshida using gas chromatography-mass spectrometry (GC-MS), infrared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). In S. pacifica, two cyclopentyl fatty acids, 11-cyclopentylundecanoic acid (7.0%), and 13-cyclopentyltridecanoic acid (4.9%), and a cyclopropane fatty acid, cis-11,12-methylene-hexadecanoic acid (7.9%) contributed significantly to the overall fatty acid profile. In particular, this cyclopropane fatty acid has been primarily found in bacteria, rumen microorganisms or foods of animal origin, and has not previously been found in any other algae. In addition, this alga contains a significant amount of the monoenoic acid cis-11-hexadecenoic acid (9.0%). Therefore, cis-11,12-methylene-hexadecanoic acid in S. pacifica was likely produced by methylene addition to cis-11-hexadecenoic acid.
Collapse
|
10
|
Desmarais A, Sébédio J, Belkacemi K, Arul J, Angers P. Formation Kinetics of Monomeric Cyclic Fatty Acid Methyl Esters of Alpha‐Linolenic Acid: Effects of Mono
cis
/
trans
Isomers. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Amélie Desmarais
- Department of Food SciencesUniversité Laval2425 rue de l'Agriculture Québec, QC G1V 0A6 Canada
- Institute of Nutrition and Functional FoodsUniversité Laval2440 Boulevard Hochelaga Québec, QC G1V 0A6 Canada
| | - Jean‐Louis Sébédio
- Unité de Nutrition HumaineINRA Route de Theix, 63122 St Genès Champanelle France
| | - Khaled Belkacemi
- Institute of Nutrition and Functional FoodsUniversité Laval2440 Boulevard Hochelaga Québec, QC G1V 0A6 Canada
- Department of Soil and Agri‐Food EngineeringUniversité Laval 2425 rue de l'Agriculture, Québec, QC G1V 0A6 Canada
| | - Joseph Arul
- Department of Food SciencesUniversité Laval2425 rue de l'Agriculture Québec, QC G1V 0A6 Canada
- Institute of Nutrition and Functional FoodsUniversité Laval2440 Boulevard Hochelaga Québec, QC G1V 0A6 Canada
| | - Paul Angers
- Department of Food SciencesUniversité Laval2425 rue de l'Agriculture Québec, QC G1V 0A6 Canada
- Institute of Nutrition and Functional FoodsUniversité Laval2440 Boulevard Hochelaga Québec, QC G1V 0A6 Canada
| |
Collapse
|
11
|
Okada S, Taylor M, Zhou XR, Naim F, Marshall D, Blanksby SJ, Singh SP, Wood CC. Producing Cyclopropane Fatty Acid in Plant Leafy Biomass via Expression of Bacterial and Plant Cyclopropane Fatty Acid Synthases. FRONTIERS IN PLANT SCIENCE 2020; 11:30. [PMID: 32117373 PMCID: PMC7020751 DOI: 10.3389/fpls.2020.00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
Saturated mid-chain branched fatty acids (SMCBFAs) are widely used in the petrochemical industry for their high oxidative stability and low melting temperature. Dihydrosterculic acid (DHSA) is a cyclopropane fatty acid (CPA) that can be converted to SMCBFA via hydrogenation, and therefore oils rich in DHSA are a potential feedstock for SMCBFA. Recent attempts to produce DHSA in seed oil by recombinant expression of cyclopropane fatty acid synthases (CPFASes) resulted in decreased oil content and poor germination or low DHSA accumulation. Here we explored the potential for plant vegetative tissue to produce DHSA by transiently expressing CPFAS enzymes in leaf. When CPFASes from plant and bacterial origin were transiently expressed in Nicotiana benthamiana leaf, it accumulated up to 1 and 3.7% DHSA in total fatty acid methyl ester (FAME), respectively, which increased up to 4.8 and 11.8%, respectively, when the N. benthamiana endogenous oleoyl desaturase was silenced using RNA interference (RNAi). Bacterial CPFAS expression produced a novel fatty acid with a cyclopropane ring and two carbon-carbon double bonds, which was not seen with plant CPFAS expression. We also observed a small but significant additive effect on DHSA accumulation when both plant and bacterial CPFASes were co-expressed, possibly due to activity upon different oleoyl substrates within the plant cell. Lipidomics analyses found that CPFAS expression increased triacylglycerol (TAG) accumulation relative to controls and that DHSA was distributed across a range of lipid species, including diacylglycerol and galactolipids. DHSA and the novel CPA were present in phosphatidylethanolamine when bacterial CPFAS was expressed in leaf. Finally, when plant diacylglycerol acyltransferase was coexpressed with the CPFASes DHSA accumulated up to 15% in TAG. This study shows that leaves can readily produce and accumulate DHSA in leaf oil. Our findings are discussed in line with current knowledge in leaf oil production for a possible route to DHSA production in vegetative tissue.
Collapse
Affiliation(s)
- Shoko Okada
- CSIRO Land and Water, Canberra, ACT, Australia
| | | | - Xue-Rong Zhou
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Fatima Naim
- Center for Crop Disease Management, Faculty of Science and Engineering, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - David Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Craig C. Wood
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
12
|
Götze S, Stallforth P. Structure elucidation of bacterial nonribosomal lipopeptides. Org Biomol Chem 2020; 18:1710-1727. [DOI: 10.1039/c9ob02539a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We provide a summary of the tools, which allow elucidate the structures of nonribosomal lipopetides.
Collapse
Affiliation(s)
- Sebastian Götze
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
13
|
The synthesis of branched-chain fatty acids is limited by enzymatic decarboxylation of ethyl- and methylmalonyl-CoA. Biochem J 2019; 476:2427-2447. [PMID: 31416829 PMCID: PMC6717113 DOI: 10.1042/bcj20190500] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022]
Abstract
Most fatty acids (FAs) are straight chains and are synthesized by fatty acid synthase (FASN) using acetyl-CoA and malonyl-CoA units. Yet, FASN is known to be promiscuous as it may use methylmalonyl-CoA instead of malonyl-CoA and thereby introduce methyl-branches. We have recently found that the cytosolic enzyme ECHDC1 degrades ethylmalonyl-CoA and methylmalonyl-CoA, which presumably result from promiscuous reactions catalyzed by acetyl-CoA carboxylase on butyryl- and propionyl-CoA. Here, we tested the hypothesis that ECHDC1 is a metabolite repair enzyme that serves to prevent the formation of methyl- or ethyl-branched FAs by FASN. Using the purified enzyme, we found that FASN can incorporate not only methylmalonyl-CoA but also ethylmalonyl-CoA, producing methyl- or ethyl-branched FAs. Using a combination of gas-chromatography and liquid chromatography coupled to mass spectrometry, we observed that inactivation of ECHDC1 in adipocytes led to an increase in several methyl-branched FAs (present in different lipid classes), while its overexpression reduced them below wild-type levels. In contrast, the formation of ethyl-branched FAs was observed almost exclusively in ECHDC1 knockout cells, indicating that ECHDC1 and the low activity of FASN toward ethylmalonyl-CoA efficiently prevent their formation. We conclude that ECHDC1 performs a typical metabolite repair function by destroying methyl- and ethylmalonyl-CoA. This reduces the formation of methyl-branched FAs and prevents the formation of ethyl-branched FAs by FASN. The identification of ECHDC1 as a key modulator of the abundance of methyl-branched FAs opens the way to investigate their function.
Collapse
|
14
|
Meyers MT, Cochlan WP, Carpenter EJ, Kimmerer WJ. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction. PLoS One 2019; 14:e0217047. [PMID: 31107897 PMCID: PMC6527307 DOI: 10.1371/journal.pone.0217047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Phytoplankton are the oceans' principal source of polyunsaturated fatty acids that support the growth and reproduction of consumers such as copepods. Previous studies have demonstrated ocean acidification (OA) can change the availability of polyunsaturated fatty acids to consumer diets which may affect consumer reproduction. Two laboratory experiments were conducted to examine the effects of feeding high-pCO2-reared phytoplankton on copepod egg production, hatching success, and naupliar survival. Marine phytoplankton Rhodomonas salina, Skeletonema marinoi, Prorocentrum micans, and Isochrysis galbana were exponentially grown in semi-continuous cultures at present (control) (400 ppm CO2, pH~8.1) and future (1,000 ppm CO2, pH~7.8) conditions and provided to Acartia tonsa copepods over 4 consecutive days as either nitrogen-limited (Exp. I) or nitrogen-depleted (Exp. II) mixed assemblage of phytoplankton. The composition of FAs in the phytoplankton diet was affected by pCO2 concentration and nitrogen deficiency; the ratio of essential fatty acids to total polyunsaturated fatty acids decreased in phytoplankton grown under high pCO2 and the mass of total fatty acids increased under nitrogen depletion. Additionally, total concentrations of essential fatty acids and polyunsaturated fatty acids in the diet mixtures were less under the high-pCO2 compared to the control-pCO2 treatments. Median egg production, hatching success, and naupliar survival were 48-52%, 4-87%, and 9-100% lower, respectively, in females fed high-pCO2 than females fed low-pCO2 phytoplankton, but this decrease in reproductive success was less severe when fed N-depleted, but fatty acid-rich cells. This study demonstrates that the effects of OA on the nutritional quality of phytoplankton (i.e., their cellular fatty acid composition and quota) were modified by the level of nitrogen deficiency and the resulting negative reproductive response of marine primary consumers.
Collapse
Affiliation(s)
- Morgan T. Meyers
- Department of Botany, University of Otago, Dunedin, New Zealand
- * E-mail:
| | - William P. Cochlan
- Estuary and Ocean Science Center (formerly known as the Romberg Tiburon Center for Environmental Studies), San Francisco State University, Tiburon, CA, United States of America
| | - Edward J. Carpenter
- Estuary and Ocean Science Center (formerly known as the Romberg Tiburon Center for Environmental Studies), San Francisco State University, Tiburon, CA, United States of America
| | - Wim J. Kimmerer
- Estuary and Ocean Science Center (formerly known as the Romberg Tiburon Center for Environmental Studies), San Francisco State University, Tiburon, CA, United States of America
| |
Collapse
|
15
|
White RA, Soles SA, Gavelis G, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Eurythermal Firmicute Exiguobacterium chiriqhucha Strain RW2 Isolated From a Freshwater Microbialite, Widely Adaptable to Broad Thermal, pH, and Salinity Ranges. Front Microbiol 2019; 9:3189. [PMID: 30671032 PMCID: PMC6331483 DOI: 10.3389/fmicb.2018.03189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
Members of the genus Exiguobacterium are found in diverse environments from marine, freshwaters, permafrost to hot springs. Exiguobacterium can grow in a wide range of temperature, pH, salinity, and heavy-metal concentrations. We characterized Exiguobacterium chiriqhucha strain RW2 isolated from a permanently cold freshwater microbialite in Pavilion Lake, British Columbia using metabolic assays, genomics, comparative genomics, phylogenetics, and fatty acid composition. Strain RW2 has the most extensive growth range for temperature (4–50°C) and pH (5–11) of known Exiguobacterium isolates. Strain RW2 genome predicts pathways for wide differential thermal, cold and osmotic stress using cold and heat shock cascades (e.g., csp and dnaK), choline and betaine uptake/biosynthesis (e.g., opu and proU), antiporters (e.g., arcD and nhaC Na+/K+), membrane fatty acid unsaturation and saturation. Here, we provide the first complete genome from Exiguobacterium chiriqhucha strain RW2, which was isolated from a freshwater microbialite. Its genome consists of a single 3,019,018 bp circular chromosome encoding over 3,000 predicted proteins, with a GC% content of 52.1%, and no plasmids. In addition to growing at a wide range of temperatures and salinities, our findings indicate that RW2 is resistant to sulfisoxazole and has the genomic potential for detoxification of heavy metals (via mercuric reductases, arsenic resistance pumps, chromate transporters, and cadmium-cobalt-zinc resistance genes), which may contribute to the metabolic potential of Pavilion Lake microbialites. Strain RW2 could also contribute to microbialite formation, as it is a robust biofilm former and encodes genes involved in the deamination of amino acids to ammonia (i.e., L-asparaginase/urease), which could potentially boost carbonate precipitation by lowering the local pH and increasing alkalinity. We also used comparative genomic analysis to predict the pathway for orange pigmentation that is conserved across the entire Exiguobacterium genus, specifically, a C30 carotenoid biosynthesis pathway is predicted to yield diaponeurosporene-4-oic acid as its final product. Carotenoids have been found to protect against ultraviolet radiation by quenching reactive oxygen, releasing excessive light energy, radical scavenging, and sunscreening. Together these results provide further insight into the potential of Exiguobacterium to exploit a wide range of environmental conditions, its potential roles in ecosystems (e.g., microbialites/microbial mats), and a blueprint model for diverse metabolic processes.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Mboma J, Leblanc N, Wan S, Jacobs RL, Tchernof A, Dubé P, Angers P, Jacques H. Liver and plasma lipid changes induced by cyclic fatty acid monomers from heated vegetable oil in the rat. Food Sci Nutr 2018; 6:2092-2103. [PMID: 30510710 PMCID: PMC6261175 DOI: 10.1002/fsn3.766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/28/2022] Open
Abstract
Cyclic fatty acid monomers (CFAM) generated through domestic or industrial heating of vegetable oils may alter liver enzymes and induce hepatomegaly and steatosis, but the underlying mechanisms are not clearly understood. This study aimed to assess the effects of CFAM on liver and plasma lipids and to determine whether these effects are modulated by dietary lipids. Thirty-six (36) male Wistar rats were fed either of the four isoenergetic diets consisting of canola oil or soybean oil with/without 500 mg/100 g CFAM of total fat for 28 days. Rats fed CFAM had higher liver total lipids (p = 0.03) and triacylglycerols (TAG) (p = 0.02), but less hepatic phosphatidylcholine (p = 0.02) compared to those fed the non-CFAM diets. CFAM did not alter liver phosphatidylethanolamine N-methyltransferase (PEMT) activity and CTP: phosphocholine cytidylyltransferase (CT-α) protein levels. Rats fed CFAM diets had higher levels of plasma total cholesterol (TC), VLDL + LDL cholesterol, higher ratio of TC to HDL cholesterol, and lower levels of HDL cholesterol compared with rats fed non-CFAM diets (p < 0.05). Plasma alanine transaminase (ALT) was decreased with CFAM, but plasma insulin, glucose, and TAG did not vary among the four diet groups (p < 0.05). Rats fed canola oil and CFAM had higher plasma levels of aspartate transaminase (AST) and AST/ALT ratio compared with the other three diet groups. These results indicate that CFAM may provoke an accumulation of TAG in the liver related to a decrease in phosphatidylcholine (PC) levels, but the effect of CFAM on PC concentrations may not occur through impairment of the two main PC biosynthesis pathways.
Collapse
Affiliation(s)
- Jean Mboma
- School of NutritionLaval UniversityQuebec CityQuebecCanada
| | - Nadine Leblanc
- School of NutritionLaval UniversityQuebec CityQuebecCanada
- Institute of Nutrition and Functional FoodsLaval UniversityQuebec CityQuebecCanada
| | - Sereana Wan
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - René L. Jacobs
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Agricultural, Food and Nutritional Science4‐002 Li Ka Shing Centre for Health Research InnovationsUniversity of AlbertaEdmontonAlbertaCanada
| | - André Tchernof
- School of NutritionLaval UniversityQuebec CityQuebecCanada
- Institute of Nutrition and Functional FoodsLaval UniversityQuebec CityQuebecCanada
- Quebec Heart and Lung InstituteQuebec CityQuebecCanada
| | - Pascal Dubé
- Institute of Nutrition and Functional FoodsLaval UniversityQuebec CityQuebecCanada
| | - Paul Angers
- Institute of Nutrition and Functional FoodsLaval UniversityQuebec CityQuebecCanada
- Department of Food ScienceLaval UniversityQuebec CityQuebecCanada
| | - Hélène Jacques
- School of NutritionLaval UniversityQuebec CityQuebecCanada
- Institute of Nutrition and Functional FoodsLaval UniversityQuebec CityQuebecCanada
| |
Collapse
|
17
|
White RA, Gavelis G, Soles SA, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Microbialite-Dwelling Agrococcus pavilionensis sp. nov; Reveals Genetic Promiscuity and Predicted Adaptations to Environmental Stress. Front Microbiol 2018; 9:2180. [PMID: 30374333 PMCID: PMC6196244 DOI: 10.3389/fmicb.2018.02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the bacterial genus Agrococcus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely Agrococcus occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus Agrococcus from freshwater microbialites in Pavilion Lake, British Columbia, Canada. We characterize this isolate as a new species Agrococcus pavilionensis strain RW1 and provide the first complete genome from a member of the genus Agrococcus. The A. pavilionensis genome consists of one chromosome (2,627,177 bp) as well as two plasmids (HC-CG1 1,427 bp, and LC-RRW783 31,795 bp). The genome reveals considerable genetic promiscuity via mobile elements, including a prophage and plasmids involved in integration, transposition, and heavy-metal stress. A. pavilionensis strain RW1 differs from other members of the Agrococcus genus by having a novel phospholipid fatty acid iso-C15:1Δ4, β-galactosidase activity and amygdalin utilization. Carotenoid biosynthesis is predicted by genomic metabolic reconstruction, which explains the characteristic yellow pigmentation of A. pavilionensis. Metabolic reconstructions of strain RW1 genome predicts a pathway for releasing ammonia via ammonification amino acids, which could increase the saturation index leading to carbonate precipitation. Our genomic analyses suggest signatures of environmental adaption to the relatively cold and oligotrophic conditions of Pavilion Lake microbialites. A. pavilionensis strain RW1 in modern microbialites has an ecological significance in Pavilion Lake microbialites, which include potential roles in heavy-metal cycling and carbonate precipitation (e.g., ammonification of amino acids and filamentation which many trap carbonate minerals).
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Research Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Bay Area Environmental Research Institute, Petaluma, CA, United States
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
18
|
A gas chromatography full scan high resolution Orbitrap mass spectrometry method for separation and characterization of 3-hydroxymethyl pyridine ester of fatty acids at low levels. J Chromatogr A 2018; 1575:72-79. [PMID: 30217382 DOI: 10.1016/j.chroma.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022]
Abstract
Fatty acid methyl esters (FAMEs), which are commonly used to characterize lipids, have several limitations to conclude on many structures. 3-Pyridylcarbinol esters (3-PCE) are used to characterize fatty acid structures [1], in particular, to identify ring and double bond positions on the carbon chain. Chromatographic separation of these esters is complex due to their polarity and high boiling points. In this study, we used a column with high resolutive power based on ionic liquids to increase the separation quality in gas chromatography (GC). In addition, we used a high-resolution detector (Orbitrap) to limit non-specific signals and improve the detection limits. This detector could be used with a mass filter at 5 ppm for the rapid determination of 3-PCE from its characteristic ions (m/z = 108.0441 and 92.0495). This filter allowed the identification of derivative fatty acids with good sensibility. Thus, it was possible to characterize 3-PCE by measuring the exact fragment masses to confirm structures such as C19:2n12cycloΔ9.
Collapse
|
19
|
Shibamoto S, Murata T, Lu W, Yamamoto K. Preparation of Dimethyl Disulfide Adducts from the Mono-Trans Octadecadienoic Acid Methyl Esters. Lipids 2018; 53:653-659. [PMID: 29989669 DOI: 10.1002/lipd.12047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 11/11/2022]
Abstract
The dimethyl disulfide (DMDS) adduct method is one of the more effective methods for determining double bond positions of dienoic acid. The DMDS method can be simply used to obtain the characteristic ions in which cleavage occurs between the methylthio group-added double-bond carbons as can be seen in the mass spectrum obtained using gas chromatography/electron ionization-mass spectrometry. In the case of the methylene-interrupted di-cis type and di-trans type dienoic acid, the DMDS addition reaction only occurs at one double-bond position, and cannot occur at the remaining double-bond position due to steric hindrance. As a result, two types of adducts are produced in the addition reaction. However, in the case of the methylene-interrupted mono-trans (mono-cis) type dienoic acid, the DMDS addition reaction only occurs at the cis-double bond. As a result, one type of adduct is produced in the addition reaction. In this report, we investigate the cause of the reaction selectivity by focusing on the addition reaction time.
Collapse
Affiliation(s)
- Shigeaki Shibamoto
- Shimadzu Corporation, 3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Tasuku Murata
- Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Wenjian Lu
- Shimadzu Corporation, 3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Kouhei Yamamoto
- Osaka Prefecture University, 3-7-30 Habikino City, Osaka, 583-8555, Japan
| |
Collapse
|
20
|
Eibler D, Hammerschick T, Buck L, Vetter W. Up to 21 Different Sulfur-Heterocyclic Fatty Acids in Rapeseed and Mustard Oil. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3007-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Xia W, Budge SM. Techniques for the Analysis of Minor Lipid Oxidation Products Derived from Triacylglycerols: Epoxides, Alcohols, and Ketones. Compr Rev Food Sci Food Saf 2017; 16:735-758. [PMID: 33371569 DOI: 10.1111/1541-4337.12276] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
Lipid oxidation can lead to flavor and safety issues in fat-containing foods. In order to measure the extent of lipid oxidation, hydroperoxides and their scission products are normally targeted for analytical purposes. In recent years, the formation of rarely monitored oxygenated products, including epoxides, alcohols, and ketones, has also raised concerns. These products are thought to form from alternative pathways that compete with chain scissions, and should not be neglected. In this review, a number of instrumental techniques and approaches to determine epoxides, alcohols, and ketones are discussed, with a focus on their selectivity and sensitivity in applications to food lipids and oils. Special attention is given to methods employing gas chromatography (GC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR). For characterization purposes, GC-mass spectrometry (GC-MS) provides valuable information regarding the structures of individual oxygenated fatty acids, typically as methyl esters, isolated from oxygenated triacylglycerols (TAGs), while the use of liquid chromatography-MS (LC-MS) techniques allows analysis of intact oxygenated TAGs and offers information about the position of the oxygenated acyl chain on the glycerol backbone. For quantitative purposes, traditional chromatography methods have exhibited excellent sensitivity, while spectroscopic methods, including NMR, are superior to chromatography for their rapid analytical cycles. Future studies should focus on the development of a routine quantitative method that is both selective and sensitive.
Collapse
Affiliation(s)
- Wei Xia
- Dept. of Process Engineering and Applied Science, Dalhousie Univ., Halifax, NS, B3H 4R2, Canada
| | - Suzanne M Budge
- Dept. of Process Engineering and Applied Science, Dalhousie Univ., Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
22
|
Monroig Ó, de Llanos R, Varó I, Hontoria F, Tocher DR, Puig S, Navarro JC. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein. Mar Drugs 2017; 15:md15030082. [PMID: 28335553 PMCID: PMC5367039 DOI: 10.3390/md15030082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/05/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs.
Collapse
Affiliation(s)
- Óscar Monroig
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Rosa de Llanos
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland, UK.
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia 46980, Spain.
| | - Inmaculada Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Sergi Puig
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia 46980, Spain.
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| |
Collapse
|
23
|
Rapid Analysis Procedures for Triglycerides and Fatty Acids as Pentyl and Phenethyl Esters for the Detection of Butter Adulteration Using Chromatographic Techniques. J FOOD QUALITY 2017. [DOI: 10.1155/2017/9698107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper presents the development of three methods for quality control, fraud detection, and authentication of butter fat and other oils/fats using chromatographic techniques, with one method for triglycerides and two methods for fatty acids (FAs). The procedure for the analysis of triglycerides requires only dissolution of the sample inn-hexane and gas chromatography (GC) analysis using a capillary column. The second method is based on the transesterification of triglycerides as pentyl esters in a single-step reaction using sodium pentanoate in pentanol. The reaction proceeds at room temperature and is similar to the potassium hydroxide-catalysed transesterification of triglycerides with methanol and even more similar to the sodium methoxide method and sodium butanoate method. The advantage of using pentyl esters includes reducing the volatility of short-chain FAs, and substantial recoveries were obtained compared with methyl ester analysis. The third method involves the transesterification of triglycerides in fat through reaction with 2-phenylethanol in a single step; 2-phenylethanol possesses a chromophore, and the phenethyl esters formed are analysed by high-performance liquid chromatography (HPLC) with UV detection.
Collapse
|
24
|
Sieben D, Santana A, Nowka P, Weber S, Funke K, Hüttenhain SH. Preparation of the even-numbered 3-oxo fatty acid nicotinyl esters from C6:0 to C18:0. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Kim CS, Lim DH, Keum YS. Lipase-Catalyzed Synthesis of Fatty Acid Pyridylcarbinol Ester for the Analysis of Seed Lipids. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2783-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Chang-Su Kim
- ; Department of Bioresources and Food Science, College of Life and Environmental Sciences; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul Republic of Korea
| | - Do-Hyung Lim
- ; Department of Bioresources and Food Science, College of Life and Environmental Sciences; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul Republic of Korea
| | - Young Soo Keum
- ; Department of Bioresources and Food Science, College of Life and Environmental Sciences; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul Republic of Korea
| |
Collapse
|
26
|
Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PLoS One 2015; 10:e0145850. [PMID: 26710334 PMCID: PMC4692509 DOI: 10.1371/journal.pone.0145850] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.
Collapse
|
27
|
Tanaka H, Harauma A, Takimoto M, Moriguchi T. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency. Prostaglandins Leukot Essent Fatty Acids 2015; 97:1-6. [PMID: 25795036 DOI: 10.1016/j.plefa.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function.
Collapse
Affiliation(s)
- Hideko Tanaka
- Laboratory for Functional Analysis of Marine Materials, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuou, Sagamihara, Kanagawa 252-5201, Japan
| | - Akiko Harauma
- Laboratory for Functional Analysis of Marine Materials, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuou, Sagamihara, Kanagawa 252-5201, Japan
| | - Mao Takimoto
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuou, Sagamihara, Kanagawa 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Analysis of Marine Materials, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuou, Sagamihara, Kanagawa 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuou, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
28
|
Akinwole PO, Lefevre E, Powell MJ, Findlay RH. Unique odd-chain polyenoic phospholipid fatty acids present in chytrid fungi. Lipids 2014; 49:933-42. [PMID: 25119485 DOI: 10.1007/s11745-014-3934-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
Chytrid fungi are ubiquitous components of aquatic and terrestrial ecosystems yet they remain understudied. To investigate the use of phospholipid fatty acids as phenotypic characteristics in taxonomic studies and biomarkers for ecological studies, 18 chytrid fungi isolated from soil to freshwater samples were grown in defined media and their phospholipid fatty acid profile determined. Gas chromatographic/mass spectral analysis indicated the presence of fatty acids typically associated with fungi, such as 16:1(n-7), 16:0, 18:2(n-6), 18:3(n-3) 18:1(n-9), and 18:0, as well as, a number of odd-chain length fatty acids, including two polyunsaturated C-17 fatty acids. Conversion to their 3-pyridylcarbinol ester facilitated GC-MS determination of double-bond positions and these fatty acid were identified as 6,9-17:2 [17:2(n-8)] and 6,9,12-17:3 [17:3(n-5)]. To the best of our knowledge, this is the first report of polyunsaturated C-17 fatty acids isolated from the phospholipids of chytrid fungi. Cluster analysis of PLFA profiles showed sufficient correlation with chytrid phylogeny to warrant inclusion of lipid analysis in species descriptions and the presence of several phospholipid fatty acids of restricted phylogenetic distributions suggests their usefulness as biomarkers for ecological studies.
Collapse
Affiliation(s)
- Philips O Akinwole
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | | | | | | |
Collapse
|
29
|
Bollinger JG, Naika GS, Rohan G, Sadilek M, Gelb MH. LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J Lipid Res 2013; 54:3523-30. [PMID: 23945566 DOI: 10.1194/jlr.d040782] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quantitative analysis of fatty acids (FAs) is an important area of analytical biochemistry. Ultra high sensitivity FA analysis usually is done with gas chromatography of pentafluorobenzyl esters coupled to an electron-capture detector. With the popularity of electrospray ionization (ESI) mass spectrometers coupled to liquid chromatography, it would be convenient to develop a method for ultra high sensitivity FA detection using this equipment. Although FAs can be analyzed by ESI in negative ion mode, this method is not very sensitive. In this study, we demonstrate a new method of FA analysis based on conversion of the carboxylic acid to an amide bearing a permanent positive charge, N-(4-aminomethylphenyl)pyridinium (AMPP) combined with analysis on a reverse-phase liquid chromatography column coupled to an ESI mass spectrometer operating in positive ion mode. This leads to an ∼60,000-fold increase in sensitivity compared with the same method carried out with underivatized FAs. The new method is about 10-fold more sensitive than the existing method of gas chromatography/electron-capture mass spectrometry of FA pentafluorobenzyl esters. Furthermore, significant fragmentation of the precursor ions in the nontag portion improves analytical specificity. We show that a large number of FA molecular species can be analyzed with this method in complex biological samples such as mouse serum.
Collapse
Affiliation(s)
- James G Bollinger
- Departments of Chemistry and University of Washington, Seattle, WA 98195
| | | | | | | | | |
Collapse
|
30
|
Monroig O, Navarro JC, Dick JR, Alemany F, Tocher DR. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:411-422. [PMID: 22160425 DOI: 10.1007/s10126-011-9423-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/20/2011] [Indexed: 05/31/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFA) have been identified as essential compounds for common octopus (Octopus vulgaris), but precise dietary requirements have not been determined due, in part, to the inherent difficulties of performing feeding trials on paralarvae. Our objective is to establish the essential fatty acid (EFA) requirements for paralarval stages of the common octopus through characterisation of the enzymes of endogenous LC-PUFA biosynthetic pathways. In this study, we isolated a cDNA with high homology to fatty acyl desaturases (Fad). Functional characterisation in recombinant yeast showed that the octopus Fad exhibited Δ5-desaturation activity towards saturated and polyunsaturated fatty acyl substrates. Thus, it efficiently converted the yeast's endogenous 16:0 and 18:0 to 16:1n-11 and 18:1n-13, respectively, and desaturated exogenously added PUFA substrates 20:4n-3 and 20:3n-6 to 20:5n-3 (EPA) and 20:4n-6 (ARA), respectively. Although the Δ5 Fad enables common octopus to produce EPA and ARA, the low availability of its adequate substrates 20:4n-3 and 20:3n-6, either in the diet or by limited endogenous synthesis from C(18) PUFA, might indicate that EPA and ARA are indeed EFA for this species. Interestingly, the octopus Δ5 Fad can also participate in the biosynthesis of non-methylene-interrupted FA, PUFA that are generally uncommon in vertebrates but have been found previously in marine invertebrates, including molluscs, and now also confirmed to be present in specific tissues of common octopus.
Collapse
Affiliation(s)
- Oscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain.
| | | | | | | | | |
Collapse
|
31
|
Yeboah SO, Mitei YC, Ngila JC, Wessjohann L, Schmidt J. Compositional and structural studies of the oils from two edible seeds: Tiger nut, Cyperus esculentum, and asiato, Pachira insignis, from Ghana. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.06.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Identification of the Unsaturated Heptadecyl Fatty Acids in the Seed Oils of Thespesia populnea and Gossypium hirsutum. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2071-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Keum YS, Park HW, Song HH, Kim BD, Kang BC, Kim JH. Metabolite analysis of long chain branched fatty acids and capsaicin biosynthesis in Capsicum annuum placenta. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-1163-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, Bugni TS. Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. JOURNAL OF NATURAL PRODUCTS 2012; 75:735-40. [PMID: 22482367 PMCID: PMC3349995 DOI: 10.1021/np300016r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A marine Nocardia sp. isolated from the ascidian Trididemnum orbiculatum was found to produce five new lipopeptides, peptidolipins B-F (1-5), which show distinct similarities to the previously reported L-Val(6) analog of peptidolipin NA. Synthetic modification of peptidolipin E (4) was used to determine the location of an olefin within the lipid chain. The advanced Marfey's method was used to determine the absolute configurations of the amino acids. Peptidolipins B (1) and E (4) demonstrated moderate antibacterial activity against methicillin-resistant Staphylococcus aureus and methicillin-sensitive Staphylococcus aureus.
Collapse
Affiliation(s)
| | | | | | | | - Tim S. Bugni
- To whom correspondence should be addressed: Tel: (608)-263-2519. Fax: (608)-262-5345.
| |
Collapse
|
35
|
Müller FD, Beck S, Strauch E, Linscheid MW. Bacterial Predators Possess Unique Membrane Lipid Structures. Lipids 2011; 46:1129-40. [DOI: 10.1007/s11745-011-3614-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/09/2011] [Indexed: 11/29/2022]
|
36
|
Yeboah SO, Mitei YC, Ngila JC, Wessjohann L, Schmidt J. Compositional and Structural Studies of the Major and Minor Components in Three Cameroonian Seed Oils by GC–MS, ESI-FTICR-MS and HPLC. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1832-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Hochmuth T, Niederkrüger H, Gernert C, Siegl A, Taudien S, Platzer M, Crews P, Hentschel U, Piel J. Linking chemical and microbial diversity in marine sponges: possible role for poribacteria as producers of methyl-branched fatty acids. Chembiochem 2011; 11:2572-8. [PMID: 21077090 DOI: 10.1002/cbic.201000510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many marine sponges contain massive numbers of largely uncultivated, phylogenetically diverse bacteria that seem to be important contributors to the chemistry of these animals. Insights into the diversity, origin, distribution, and function of their metabolic gene communities are crucial to dissect the chemical ecology and biotechnological potential of sponge symbionts. This study reveals a sharp dichotomy between high and low microbial abundance sponges with respect to polyketide synthase (PKS) gene content, the presence of methyl-branched fatty acids, and the presence of members of the symbiotic candidate phylum "Poribacteria". For the symbiont-rich sponge Cacospongia mycofijiensis, a source of the tubulin-inhibiting fijianolides (=laulimalides), near-exhaustive large-scale sequencing of PKS gene-derived PCR amplicons was conducted. Although these amplicons exhibit high diversity at the sequence level, almost all of them belong to a single, architecturally unique group of PKSs present in "Poribacteria" and are proposed to synthesize methyl-branched fatty acids. Three components of this PKS were studied in vitro, providing initial insight into its biochemistry.
Collapse
Affiliation(s)
- Thomas Hochmuth
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hauff S, Vetter W. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J Chromatogr A 2010; 1217:8270-8. [DOI: 10.1016/j.chroma.2010.10.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/29/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
39
|
Wetzel DL, Reynolds JE, Sprinkel JM, Schwacke L, Mercurio P, Rommel SA. Fatty acid profiles as a potential lipidomic biomarker of exposure to brevetoxin for endangered Florida manatees (Trichechus manatus latirostris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:6124-6133. [PMID: 20880571 DOI: 10.1016/j.scitotenv.2010.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 05/29/2023]
Abstract
Fatty acid signature analysis (FASA) is an important tool by which marine mammal scientists gain insight into foraging ecology. Fatty acid profiles (resulting from FASA) represent a potential biomarker to assess exposure to natural and anthropogenic stressors. Florida manatees are well studied, and an excellent necropsy program provides a basis against which to assess this budding tool. Results using samples from 54 manatees assigned to four cause-of-death categories indicated that those animals exposed to or that died due to brevetoxin exposure (red tide, or RT samples) demonstrate a distinctive hepatic fatty acid profile. Discriminant function analysis indicated that hepatic fatty acids could be used to classify RT versus non-RT liver samples with reasonable certainty. A discriminant function was derived based on 8 fatty acids which correctly classified 100% of samples from a training dataset (10 RT and 25 non-RT) and 85% of samples in a cross-validation dataset (5 RT and 13 non-RT). Of the latter dataset, all RT samples were correctly classified, but two of thirteen non-RT samples were incorrectly classified. However, the "incorrect" samples came from manatees that died due to other causes during documented red tide outbreaks; thus although the proximal cause of death was due to watercraft collisions, exposure to brevetoxin may have affected these individuals in ways that increased their vulnerability. This use of FASA could: a) provide an additional forensic tool to help scientists and managers to understand cause of death or debilitation due to exposure to red tide in manatees; b) serve as a model that could be applied to studies to improve assessments of cause of death in other marine mammals; and c) be used, as in humans, to help diagnose metabolic disorders or disease states in manatees and other species.
Collapse
Affiliation(s)
- Dana L Wetzel
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, United States.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Biosynthesis of the highly biologically active long-chain polyunsaturated fatty acids, arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids, in vertebrates requires the introduction of up to three double bonds catalyzed by fatty acyl desaturases (Fad). Synthesis of ARA is achieved by Δ6 desaturation of 182n - 6 to produce 183n - 6 that is elongated to 203n - 6 followed by Δ5 desaturation. Synthesis of EPA from 183n - 3 requires the same enzymes and pathway as for ARA, but DHA synthesis reportedly requires two further elongations, a second Δ6 desaturation and a peroxisomal chain shortening step. This paper describes cDNAs, fad1 and fad2, isolated from the herbivorous, marine teleost fish (Siganus canaliculatus) with high similarity to mammalian Fad proteins. Functional characterization of the cDNAs by heterologous expression in the yeast Saccharomyces cerevisiae showed that Fad1 was a bifunctional Δ6/Δ5 Fad. Previously, functional dual specificity in vertebrates had been demonstrated for a zebrafish Danio rerio Fad and baboon Fad, so the present report suggests bifunctionality may be more widespread in vertebrates. However, Fad2 conferred on the yeast the ability to convert 225n - 3 to DHA indicating that this S. canaliculatus gene encoded an enzyme having Δ4 Fad activity. This is a unique report of a Fad with Δ4 activity in any vertebrate species and indicates that there are two possible mechanisms for DHA biosynthesis, a direct route involving elongation of EPA to 225n - 3 followed by Δ4 desaturation, as well as the more complicated pathway as described above.
Collapse
|
41
|
Detection of lactobacillic acid in low erucic rapeseed oil--A note of caution when quantifying cyclic fatty acid monomers in vegetable oils. Chem Phys Lipids 2010; 163:698-702. [PMID: 20654602 DOI: 10.1016/j.chemphyslip.2010.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/25/2010] [Accepted: 07/09/2010] [Indexed: 11/23/2022]
Abstract
The purpose of this work was to identify an unknown component which has been detected during the analysis of cyclic fatty acid monomers (CFAMs) in low erucic acid rapeseed oils (LEAR). A sample of crude LEAR was transformed into fatty acid methyl esters (FAMEs) and hydrogenated using PtO(2). The hydrogenated sample was fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and the fraction containing the CFAMs transformed into picolinyl esters. Analysing these picolinyl derivatives by gas-liquid chromatography coupled to mass spectrometry (GC-MS) showed that the unknown product observed in LEAR is the 11,12-methylene-octadecanoic acid. This cyclic fatty acid was also found in crude LEAR and in the corresponding seeds but was not detected in crude soya and sunflower oils. As this acid is present in the same fraction as CFAMs, known to be formed during heat treatment, great care must therefore be taken for not including it when quantifying CFAMs. It is thus necessary to verify by mass spectrometry the structures of the CFAMs in the isolated cyclic fatty acid fraction prior to quantification.
Collapse
|
42
|
Hauff S, Rilfors L, Hottinger G, Vetter W. Structure and absolute configuration of an unsaturated anteiso fatty acid from Bacillus megaterium. J Chromatogr A 2010; 1217:1683-7. [DOI: 10.1016/j.chroma.2010.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/03/2010] [Accepted: 01/08/2010] [Indexed: 11/26/2022]
|
43
|
Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Appl Environ Microbiol 2010; 76:2562-73. [PMID: 20190083 DOI: 10.1128/aem.02348-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mechanisms involved in the ability of Bacillus cereus to multiply at low temperatures were investigated. It was assumed that many genes involved in cold acclimation would be upregulated at low temperatures. Recombinase-based in vivo expression technology (IVET) was adapted to the detection of the transient activation of B. cereus promoters during growth at 10 degrees C. Four independent screenings of a promoter library from type strain ATCC 14579 were performed, and 17 clones were isolated. They corresponded to 17 promoter regions that displayed reproducibly elevated expression at 10 degrees C relative to expression at 30 degrees C. This analysis revealed several genes that may be important for B. cereus to grow successfully under the restrictive conditions of cold habitats. Among them, a locus corresponding to open reading frames BC5402 to BC5398, harboring a lipase-encoding gene and a putative transcriptional regulator, was identified three times. While a mutation in the putative regulator-encoding gene did not cause any particular phenotype, a mutant deficient in the lipase-encoding gene showed reduced growth abilities at low temperatures compared with the parental strain. The mutant did not change its fatty acid profiles in the same way as the wild type when grown at 12 degrees C instead of 37 degrees C. This study demonstrates the feasibility of a promoter trap strategy for identifying cold-induced genes. It outlines a first picture of the different processes involved in B. cereus cold acclimation.
Collapse
|
44
|
Sánchez-Ávila N, Mata-Granados J, Ruiz-Jiménez J, Luque de Castro M. Fast, sensitive and highly discriminant gas chromatography–mass spectrometry method for profiling analysis of fatty acids in serum. J Chromatogr A 2009; 1216:6864-72. [DOI: 10.1016/j.chroma.2009.08.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/31/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
45
|
Dubois N, Barnathan G, Gouygou JP, Bergé JP. Gas chromatographic behavior of fatty acid derivatives for mass spectrometry on low-polarity capillary columns. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Gómez-Cortés P, Tyburczy C, Brenna JT, Juárez M, de la Fuente MA. Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J Lipid Res 2009; 50:2412-20. [PMID: 19542528 DOI: 10.1194/jlr.m800662-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rumen biohydrogenation of dietary alpha-linolenic acid gives rise in ruminants to accumulation of fatty acid intermediates, some of which may be transferred into milk. Rumelenic acid [cis-9 trans-11 cis-15 C18:3 (RLnA)] has recently been characterized, but other C18:3 minor isomers are still unknown. The objective of this work was to identify a new isomer of octatridecenoic acid present in milk fat from ewes fed different sources of alpha-linolenic acid. Structural characterization of this fatty acid was achieved by GC-MS. Analysis of dimethyloxazoline and picolinyl ester derivatives allowed for location of the double bond positions. Covalent adduct chemical ionization tandem mass spectrometry confirmed the positional structure 9-11-15, identical to RLnA, and helped to establish double bond geometry (cis-trans-trans). This new C18:3 isomer could be formed by isomerization of cis-15 bond of RLnA and subsequently converted by hydrogenation to trans-11 trans-15 C18:2, an octadecadienoic acid also detected in this study.
Collapse
Affiliation(s)
- Pilar Gómez-Cortés
- Instituto del Frío (Consejo Superior de Investigaciones Científicas), José Antonio Novais 10, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Vetter W, Wegner I. Quantitative Determination of Isostearic Acid Isomers in Skin Creams by GC-MS-SIM. Chromatographia 2009. [DOI: 10.1365/s10337-009-1134-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl Microbiol Biotechnol 2009; 82:929-39. [PMID: 19221734 DOI: 10.1007/s00253-009-1891-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/14/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Clostridium thermocellum is a candidate organism for consolidated bioprocessing of lignocellulosic biomass into ethanol. However, commercial use is limited due to growth inhibition at modest ethanol concentrations. Recently, an ethanol-adapted strain of C. thermocellum was produced. Since ethanol adaptation in microorganisms has been linked to modification of membrane lipids, we tested the hypothesis that ethanol adaptation in C. thermocellum involves lipid modification by comparing the fatty acid composition and membrane anisotropy of wild-type and ethanol-adapted strains. Derivatization to fatty acid methyl esters provided quantitative lipid analysis. Compared to wild-type, the ethanol-adapted strain had a larger percentage of fatty acids with chain lengths >16:0 and showed a significant increase in the percentage of 16:0 plasmalogens. Structural identification of fatty acids was confirmed through mass spectral fragmentation patterns of picolinyl esters. Ethanol adaptation did not involve modification at sites of methyl branching or the unsaturation index. Comparison of steady-state fluorescence anisotropy experiments, in the absence and presence of ethanol, provided evidence for the effects of ethanol on membrane fluidity. In the presence of ethanol, both strains displayed increased fluidity by approximately 12%. These data support the model that ethanol adaptation was the result of fatty acid changes that increased membrane rigidity that counter-acted the fluidizing effect of ethanol.
Collapse
|
49
|
NMR, GC–MS and ESI-FTICR-MS Profiling of Fatty Acids and Triacylglycerols in Some Botswana Seed Oils. J AM OIL CHEM SOC 2008. [DOI: 10.1007/s11746-008-1301-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Kangani CO, Kelley DE, Delany JP. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 873:95-101. [PMID: 18757250 PMCID: PMC2590674 DOI: 10.1016/j.jchromb.2008.08.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/23/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
A simple, direct and accurate method for the determination of concentration and enrichment of free fatty acids (FFAs) in human plasma was developed. The validation and comparison to a conventional method are reported. Three amide derivatives, dimethyl, diethyl and pyrrolidide, were investigated in order to achieve optimal resolution of the individual fatty acids. This method involves the use of dimethylamine/Deoxo-Fluor to derivatize plasma free fatty acids to their dimethylamides. This derivatization method is very mild and efficient, and is selective only towards FFAs so that no separation from a total lipid extract is required. The direct method gave lower concentrations for palmitic acid and stearic acid and increased concentrations for oleic acid and linoleic acid in plasma as compared to methyl ester derivative after thin-layer chromatography. The [(13)C]palmitate isotope enrichment measured using direct method was significantly higher than that observed with the BF(3)/MeOH-TLC method. The present method provided accurate and precise measures of concentration as well as enrichment when analyzed with gas chromatography combustion-isotope ratio-mass spectrometry.
Collapse
Affiliation(s)
- Cyrous O Kangani
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|