1
|
Lozano-Castellón J, Rinaldi de Alvarenga JF, Vallverdú-Queralt A, Lamuela-Raventós RM. Cooking with extra-virgin olive oil: A mixture of food components to prevent oxidation and degradation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Lozano-Castellón J, Rocchetti G, Vallverdú-Queralt A, Lucchini F, Giuberti G, Torrado-Prat X, Illán M, Mª Lamuela-Raventós R, Lucini L. New insights into the lipidomic response of CaCo-2 cells to differently cooked and in vitro digested extra-virgin olive oils. Food Res Int 2022; 155:111030. [DOI: 10.1016/j.foodres.2022.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/18/2023]
|
3
|
Liu X, Xu L, Luo R, Sun‐Waterhouse D, Liu Z, Xu Q, Yang B, Lan D, Wang W, Wang Y. Thermal properties, oxidative stability, and frying applicability of highly pure soybean‐based diacylglycerol oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Long Xu
- College of Food Science and Technology Henan Agricultural University Zhengzhou China
| | - Riming Luo
- Guangdong Yue‐shan Special Nutrition Technology Co., Ltd. Foshan China
| | | | - Zhuang Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Qingqing Xu
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Bo Yang
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Dongming Lan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Weifei Wang
- Sericultural and Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Yonghua Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
4
|
Yuxiang B, Jian D, Chen X, Wang M, Binchen W, Lin X, Kunya C, Dong L. Detailed Temperature‐dependent Study of Linoleic acid Oxidative Decomposition into Volatile Compounds in the Heating Process. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bao Yuxiang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Du Jian
- Food Additives & Ingredients Association(CFAA) Beijing Beijing China
| | - Xu Chen
- Food Additives & Ingredients Association(CFAA) Beijing Beijing China
| | - Meiting Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Wang Binchen
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Xiao Lin
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Cheng Kunya
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| | - Liang Dong
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
| |
Collapse
|
5
|
Zhou L, Liu T, Yao D, Guo H, Cheng C, Chan CK. Primary emissions and secondary production of organic aerosols from heated animal fats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148638. [PMID: 34217089 DOI: 10.1016/j.scitotenv.2021.148638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Cooking is an important source of primary organic aerosol (POA) in urban areas, and it may also generate abundant non-methane organic gases (NMOGs), which form oxidized organic aerosol (OOA) after atmospheric oxidation. Edible fats play an important role in a balanced diet and are part of various types of cooking. We conducted laboratory studies to examine the primary emissions of POA and NMOGs and OOA formation using an oxidation flow reactor (OFR) for three animal fats (i.e., lard, beef and chicken fats) heated at two different temperatures (160 and 180 °C). Positive matrix factorization (PMF) revealed that OOA formed together with POA loss after photochemical aging, suggesting the conversion of some POA to OOA. The maximum OOA production rates (PRs) from heated animal fats, occurring under OH exposures (OHexp) of 8.3-15 × 1010 molecules cm-3 s, ranged from 8.9 to 24.7 μg min-1, 1.6-14.5 times as high as initial POA emission rates (ERs). NMOG emissions from heated animal fats were dominated by aldehydes, which contributed 14-71% of the observed OOA. We estimated that cooking-related OOA could contribute to as high as ~10% of total organic aerosol (OA) in an urban area in Hong Kong, where cooking OA (COA) dominated the POA. This study provides insights into the potential contribution of cooking to urban OOA, which might be especially pronounced when cooking contributions dominate the primary emissions.
Collapse
Affiliation(s)
- Liyuan Zhou
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China.
| | - Dawen Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Duffy E, Cauven E, Morrin A. Colorimetric Sensing of Volatile Organic Compounds Produced from Heated Cooking Oils. ACS OMEGA 2021; 6:7394-7401. [PMID: 33778252 PMCID: PMC7992057 DOI: 10.1021/acsomega.0c05667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Measurement of cooking-associated air pollution indoors is an integral part of exposure monitoring and human health risk assessment. There is a need for easy to use, fast, and economical detection systems to quantify the various emissions from different sources in the home. Addressing this challenge, a colorimetric sensor array (CSA) is reported as a new method to characterize volatile organic compounds produced from cooking, a major contributor to indoor air pollution. The sensor array is composed of pH indicators and aniline dyes from classical spot tests, which enabled molecular recognition of a variety of aldehydes, ketones, and carboxylic acids as demonstrated by hierarchical clustering and principal component analyses. To demonstrate the concept, these CSAs were employed for differentiation of emissions from heated cooking oils (sunflower, rapeseed, olive, and groundnut oils). Sensor results were validated by gas chromatography-mass spectrometry analysis, highlighting the potential of the sensor array for evaluating cooking emissions as a source of indoor air pollution.
Collapse
Affiliation(s)
- Emer Duffy
- INSIGHT
SFI Research Centre for Data Analytics, National Centre for Sensor
Research, School of Chemical Sciences, Dublin
City University, Glasnevin, Dublin 9, Ireland
| | - Emme Cauven
- School
of Natural Science, Fontys University of
Applied Sciences, Romdom
1, 5612AP Eindhoven, The Netherlands
| | - Aoife Morrin
- INSIGHT
SFI Research Centre for Data Analytics, National Centre for Sensor
Research, School of Chemical Sciences, Dublin
City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
7
|
Hierarchical ZSM-5 based on fly ash for the low-temperature purification of odorous volatile organic compound in cooking fumes. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01633-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhou X, Gao Q, Praticò G, Chen J, Dragsted LO. Biomarkers of tuber intake. GENES & NUTRITION 2019; 14:9. [PMID: 30984301 PMCID: PMC6444566 DOI: 10.1186/s12263-019-0631-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/05/2019] [Indexed: 11/29/2022]
Abstract
Tubers are important crops as well as staple foods in human nutrition. Among tubers, the potato in particular has been investigated for its health effects. However, except for its contribution to energy and effects related to resistant starch, the role of potatoes and other tubers in human health is still debated. In order to establish firm evidence for the health effects of dietary tubers and processed tuber products, it is essential to assess total intake accurately. The dietary assessment in most studies relies mainly on self-reporting and may give imprecise quantitative information on dietary intakes. Biomarkers of food intake (BFIs) are useful objective means to assess intake of specific foods or may be used as an additional measure to calibrate the measurement error in dietary reports. Here, intake biomarkers for common tubers, including potatoes and heated potato products, sweet potato, cassava, yam, and Jerusalem artichoke, are reviewed according to the biomarker of food intake reviews (BFIRev) standardized protocols for review and validation. Candidate BFIs for heated potato product include α-chaconine, α-solanine, and solanidine; less evidence is available to indicate peonidin 3-caffeoylsophoroside-5-glucoside and cyanidin 3-caffeoylsophoroside-5-glucoside as putative biomarkers having high potential specificity for purple sweet potato intake; linamarin may in addition be considered as a putative BFI for cassava. Other tubers also contain toxic glycosides or common contaminants as characteristic components but their putative use as intake biomarkers is not well documented. Alkyl pyrazines, acrylamide, and acrolein are formed during cooking of heated potato products while these have not yet been investigated for other tubers; these markers may not be specific only to heated potato but measurements of these compounds in blood or urine may be combined with more specific markers of the heated products, e.g., with glycoalkaloids to assess heated potato products consumption. Further studies are needed to assess the specificity, robustness, reliability, and analytical performance for the candidate tuber intake biomarkers identified in this review.
Collapse
Affiliation(s)
- Xiaomin Zhou
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Qian Gao
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Chang C, Wu G, Zhang H, Jin Q, Wang X. Deep-fried flavor: characteristics, formation mechanisms, and influencing factors. Crit Rev Food Sci Nutr 2019; 60:1496-1514. [DOI: 10.1080/10408398.2019.1575792] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chang Chang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Gangcheng Wu
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Zhang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Qingzhe Jin
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xingguo Wang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Risk assessment of personal exposure to polycyclic aromatic hydrocarbons and aldehydes in three commercial cooking workplaces. Sci Rep 2019; 9:1661. [PMID: 30733493 PMCID: PMC6367358 DOI: 10.1038/s41598-018-38082-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/25/2018] [Indexed: 01/03/2023] Open
Abstract
Cooking-related emissions are associated with environmental pollution and adverse health effects. Of the various chemical species emitted during cooking, polycyclic aromatic hydrocarbons (PAHs) and aldehydes are two chemical species with carcinogenic or tumor promoting characteristics. Although PAH exposure has been studied in commercial kitchen workers, few studies have investigated simultaneous exposure to PAHs and aldehydes in these workers. The aims of this study were to compare personal concentrations of PAH and aldehyde in three commercial cooking workplaces and to estimate their corresponding cancer risks. The three cooking workplaces included western fast food restaurant kitchens, Chinese cafeteria kitchens, and street food carts. Comparisons showed that workers in western fast food restaurant kitchens and Chinese cafeteria kitchens tended to have lower personal concentrations of these pollutants compared to workers in street food carts. The geometric mean (95% CI) cancer risks in the three workplaces were, from lowest to highest, 1.36 (1.12-1.67) × 10-5 for western fast food restaurant kitchens, 1.52 (1.01-2.28) × 10-5 for Chinese cafeteria kitchens, and 3.14 (2.45-4.01) × 10-5 for street food carts. The percentage contributions of aldehyde species to cancer risk were very high (74.9-99.7%). Street food cart workers had high personal exposure to aldehyde probably due to lack of effective exhaust systems. Thus, their cancer risk was significantly higher than those of workers in western fast food restaurant kitchens (p < 0.001) and Chinese cafeteria kitchens (p = 0.013).
Collapse
|
11
|
Sinharoy P, McAllister SL, Vasu M, Gross ER. Environmental Aldehyde Sources and the Health Implications of Exposure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:35-52. [PMID: 31368096 DOI: 10.1007/978-981-13-6260-6_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldehydes, which are present within the air as well as food and beverage sources, are highly reactive molecules that can be cytotoxic, mutagenic, and carcinogenic. To prevent harm from reactive aldehyde exposure, the enzyme aldehyde dehydrogenase 2 (ALDH2) metabolizes reactive aldehydes to a less toxic form. However, the genetic variant of ALDH2, ALDH2*2, significantly reduces the ability to metabolize reactive aldehydes in humans. Therefore, frequent environmental aldehyde exposure, coupled with inefficient aldehyde metabolism, could potentially lead to an increased health risk for diseases such as cancer or cardiovascular disease.Here, we discuss the environmental sources of reactive aldehydes and the potential health implications particularly for those with an ALDH2*2 genetic variant. We also suggest when considering the ALDH2*2 genetic variant the safety limits of reactive aldehyde exposure may have to be reevaluated. Moreover, the ALDH2*2 genetic variant can also be used as an example for how to implement precision medicine in the field of environmental health sciences.
Collapse
Affiliation(s)
- Pritam Sinharoy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacy L McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Megana Vasu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Peng CY, Lan CH, Lin PC, Kuo YC. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:160-167. [PMID: 27780622 DOI: 10.1016/j.jhazmat.2016.10.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/24/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE.
Collapse
Affiliation(s)
- Chiung-Yu Peng
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Cheng-Hang Lan
- Department of Occupational Safety and Health, Chung-Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Pei-Chen Lin
- Research Center for Cijin Cohort Study, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chun Kuo
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Li S, Gao J, He Y, Cao L, Li A, Mo S, Chen Y, Cao Y. Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen. J Environ Sci (China) 2017; 51:157-164. [PMID: 28115126 DOI: 10.1016/j.jes.2016.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Particulate matter (PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health. It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics, especially ultrafine particles (UFP<100nm) and accumulation mode particles (AMP 100-665nm). Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 265°C to investigate PM emission and decay features between 0.03 and 10μm size dimension by electrical low pressure impactor (ELPI) without ventilation. Rapeseed and sunflower produced high PM2.5 around 6.1mg/m3, in comparison with those of soybean and corn (5.87 and 4.65mg/m3, respectively) at peak emission time between 340 and 460sec since heating oil, but with the same level of particle numbers 6-9×105/cm3. Mean values of PM1.0/PM2.5 and PM2.5/PM10 at peak emission time are around 0.51-0.66 and 0.23-0.29. After 15min naturally deposition, decay rates of PM1.0, PM2.5 and PM10 are 13.3%-29.8%, 20.1%-33.9% and 41.2%-54.7%, which manifest that PM1.0 is quite hard to decay than larger particles, PM2.5 and PM10. The majority of the particle emission locates at 43nm with the largest decay rate at 75%, and shifts to a larger size between 137 and 655nm after 15min decay. The decay rates of the particles are sensitive to the oil type.
Collapse
Affiliation(s)
- Shuangde Li
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiajia Gao
- Key Laboratory of Healthy & Intelligent Kitchen System Integration, Zhejiang, Ningbo, 315336, China
| | - Yiqing He
- Key Laboratory of Healthy & Intelligent Kitchen System Integration, Zhejiang, Ningbo, 315336, China
| | - Liuxu Cao
- Key Laboratory of Healthy & Intelligent Kitchen System Integration, Zhejiang, Ningbo, 315336, China
| | - Ang Li
- Key Laboratory of Healthy & Intelligent Kitchen System Integration, Zhejiang, Ningbo, 315336, China
| | - Shengpeng Mo
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfa Chen
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yaqun Cao
- Key Laboratory of Healthy & Intelligent Kitchen System Integration, Zhejiang, Ningbo, 315336, China
| |
Collapse
|
14
|
Honda H, Fujita Y, Hayashi A, Ikeda N, Ito Y, Morita O. Genotoxicity evaluation of alpha-linolenic acid-diacylglycerol oil. Toxicol Rep 2016; 3:716-722. [PMID: 28959597 PMCID: PMC5616014 DOI: 10.1016/j.toxrep.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/07/2022] Open
Abstract
We evaluated the genotoxicity of ALA-DAG oil using standard tests. Bacterial reverse mutation and in vitro/in vivo micronucleus tests were conducted. No genotoxicity was observed under the testing conditions.
The alpha-linolenic acid (ALA)-diacylglycerol (DAG) oil is an edible oil enriched with DAG (>80%) and ALA (>50%). Although DAG oil, which mainly consists of oleic and linoleic acids has no genotoxic concerns, the fatty acid composition could affect the chemical property of DAG. Therefore, the purpose of this study was to evaluate the genotoxicity of ALA-DAG oil using standard genotoxicity tests in accordance with the OECD guidelines. ALA-DAG oil showed negative results in the bacterial reverse mutation test (Ames test) and in vitro micronucleus test in cultured Chinese hamster lung cells with and without metabolic activation, and in the in vivo bone marrow micronucleus test in mice. Our results did not show any genotoxicity, suggesting that the fatty acid composition had no deleterious effects. We conclude that ALA-DAG oil had no genotoxicity concerns under the testing conditions.
Collapse
Key Words
- 2AA, 2-aminoanthracene
- 9AA, 9-aminoacridine hydrochloride hydrate
- AF-2, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide
- ALA, alpha-linolenic acid
- Alpha-linolenic acid
- Alpha-linolenic acid-rich diacylglycerol
- B(a)P, benzo(a)pyrene
- CLC, Colchicine
- CP, cyclophosphamide
- DAG, diacylglycerol
- DMSO, dimethyl sulfoxide
- Diacylglycerol
- Fatty acid composition
- Genotoxicity
- ICH, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use
- LA, linolenic acid
- MMC, mitomycin C
- MNPCE, micronucleated polychromatic erythrocyte
- NCE, normochromatic erythrocyte
- NaN3, sodium azide
- TAG, triacylglycerol
Collapse
Affiliation(s)
- Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Yurika Fujita
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Aya Hayashi
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories Ltd., 2438 Miyanoura, Yoshida, Kagoshima 891-1394, Japan
| | - Naohiro Ikeda
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Yuichi Ito
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Osamu Morita
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
15
|
Zhang Q, Qin W, Lin D, Shen Q, Saleh ASM. The changes in the volatile aldehydes formed during the deep-fat frying process. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:7683-96. [PMID: 26604343 PMCID: PMC4648908 DOI: 10.1007/s13197-015-1923-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/14/2015] [Accepted: 06/18/2015] [Indexed: 11/26/2022]
Abstract
Volatile aldehydes (VAs) formed during soybean oil (SBO) heating, wheat dough (WD) frying, and chicken breast meat (CBM) frying processes were comparatively investigated by solid-phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS). The results showed that relative amounts (RAs) of the most detected VAs were firstly increased to maximum values in oil samples collected at the second hour of the seventh day and the values were then decreased with the increase in the time of oil heating process (control). However, for food frying processes, the time needed for reaching maximum RAs of VAs was shorter and the values were decreased with the increase in frying time. Significant change in contents of the VAs was observed for oil samples fried with CBM due to the high contents of water, protein, and lipid content compared to oil samples fried with WD. Based on the obtained results, free radical reaction, particularly positional isomerization and cis-trans isomerization, was deduced to occur when WD or CBM was fried in SBO. The relatively high RAs of VAs formed during the deep-fat frying process presented certain invaluable measures for evaluating of frying oil and fried food quality and safety.
Collapse
Affiliation(s)
- Qing Zhang
- />College of Food Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Wen Qin
- />College of Food Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Derong Lin
- />College of Food Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Qun Shen
- />National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Ahmed S. M. Saleh
- />Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|
16
|
Karim NAA, Noor AM, Lee YY, Lai OM. Stability of Silica- and Enzyme-Treated Palm Oil Under Deep Frying Conditions. J Food Sci 2015; 80:C2678-85. [PMID: 26523850 DOI: 10.1111/1750-3841.13119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022]
Abstract
The oxidative and thermal stability of low diglycerides palm oil produced via silica treatment (sPO) and enzymatic treatment (ePO) compared with standard quality palm oil (SQ) and premium quality palm oil (PQ) was investigated. Both of the oils displayed better oxidative stability compared with SQ as well as significantly higher (P < 0.05) thermal resistance and oxidative strength than SQ and PQ due to lower amounts of partial glycerides. Although the initial induction periods (IPs) of sPO and ePO were significantly lower compared with SQ and PQ, both the oils showed slower drops in their IP values. The darkening effect after frying was significantly (P < 0.05) slower in sPO compared with SQ, PQ, and ePO. Besides, there is no difference p > 0.05 in the rate of FFA formation between sPO and PQ. The anisidine value and peroxide values were lowest in sPO, followed by ePO, PQ, and SQ.
Collapse
Affiliation(s)
- Nur Azwani Ab Karim
- Sime Darby Research Sdn Bhd, R&D Carey Island-Upstream, Carey Island, Selangor, Malaysia
| | - Ahmadilfitri Md Noor
- Sime Darby Research Sdn Bhd, R&D Carey Island-Upstream, Carey Island, Selangor, Malaysia
| | - Yee-Ying Lee
- Inst. of Bioscience, Univ. Putra Malaysia, Serdang, Malaysia
| | - Oi-Ming Lai
- Inst. of Bioscience, Univ. Putra Malaysia, Serdang, Malaysia.,Dept. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Univ. Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
17
|
Zhang Q, Qin W, Li M, Shen Q, Saleh AS. Application of Chromatographic Techniques in the Detection and Identification of Constituents Formed during Food Frying: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Wen Qin
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Meiliang Li
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Qun Shen
- Natl. Engineering and Technology Research Center for Fruits and Vegetables; College of Food Science and Nutritional Engineering, China Agricultural Univ.; Beijing 100083 China
| | - Ahmed S.M. Saleh
- Dept. of Food Science and Technology; Faculty of Agriculture, Assiut Univ.; Assiut 71526 Egypt
| |
Collapse
|
18
|
Petersen KD, Kleeberg KK, Jahreis G, Busch-Stockfisch M, Fritsche J. Comparison of analytical and sensory lipid oxidation parameters in conventional and high-oleic rapeseed oil. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Guillén MD, Uriarte PS. Aldehydes contained in edible oils of a very different nature after prolonged heating at frying temperature: Presence of toxic oxygenated α,β unsaturated aldehydes. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.079] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Shimizu M, Moriwaki J, Shiiba D, Nohara H, Kudo N, Katsuragi Y. Elimination of Glycidyl Palmitate in Diolein by Treatment with Activated Bleaching Earth. J Oleo Sci 2012; 61:23-8. [DOI: 10.5650/jos.61.23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Petersen KD, Kleeberg KK, Jahreis G, Fritsche J. Assessment of the oxidative stability of conventional and high-oleic sunflower oil by means of solid-phase microextraction-gas chromatography. Int J Food Sci Nutr 2011; 63:160-9. [DOI: 10.3109/09637486.2011.609158] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Bastos LCS, Pereira PADP. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl compounds during the thermal oxidation of canola oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12777-12783. [PMID: 21105653 DOI: 10.1021/jf1028575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Canola oil was heated continuously for 8 h at a typical frying temperature (180 °C) in the presence of various concentrations of the metal ions Fe(III), Cu(II), and Al(III) (9.2, 27.5, and 46.0 μg L(-1) of oil) to evaluate changes occurring in the amount of free fatty acids, expressed as acidity index, and in the formation rates of aldehydes. The aldehydes were collected and derivatized in silica cartridges functionalized with C18 and impregnated with an acid solution of 2,4-dinitrophenylhydrazine, after which they were eluted with acetonitrile and analyzed by LC-DAD-MS. Among the substances emitted, the following were identified and quantified: formaldehyde, acetaldehyde, acrolein, propanal, butanal, hexanal, (E)-2-heptenal, and octanal. During heating of the oil, the compounds presenting the highest mean formation rates were acrolein, hexanal, and acetaldehyde. In the study of the metal ions, the addition of ions to the samples generally led to a corresponding increase in the formation rates of the eight substances. The compounds showing the highest relative increases in formation rates were formaldehyde, acetaldehyde, propanal, and heptenal. In terms of catalytic effect, copper proved to be the most efficient in promoting increased formation rates, followed by iron and aluminum.
Collapse
|
23
|
Shimizu M, Kudo N, Shiro H, Yasunaga K, Masukawa Y, Katsuragi Y, Yasumasu T. Comparison of Indirect and Direct Quantification of Glycidol Fatty Acid Ester in Edible Oils. J Oleo Sci 2010; 59:535-9. [DOI: 10.5650/jos.59.535] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
|