1
|
Fan J, Lin H, Luo J, Chen L. 4‑Methoxydalbergione inhibits the tumorigenesis and metastasis of lung cancer through promoting ferroptosis via the DNMT1/system Xc‑/GPX4 pathway. Mol Med Rep 2025; 31:19. [PMID: 39513605 DOI: 10.3892/mmr.2024.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024] Open
Abstract
Lung cancer is responsible for the highest number of tumor‑related deaths worldwide. A flavonoid extracted from the heartwood of Dalbergia sissoo Roxb., 4‑methoxydalbergione (4‑MD), exhibits potent anticancer activity in multiple malignancies; however, the potential anticancer activity of 4‑MD in lung cancer has not yet been elucidated. In the present study, A549 cells were treated with increasing concentrations of 4‑MD, and cell viability was assessed using a Cell Counting Kit‑8 assay. In addition, colony formation, 5‑ethynyl‑2'‑deoxyuridine, wound healing and Transwell assays were conducted to evaluate cell proliferation, migration and invasion, respectively. Cell morphology was observed using transmission electron microscopy, and ferroptosis was determined using thiobarbituric acid reactive substance, lipid reactive oxygen species (ROS) and iron assays. Moreover, molecular docking was used to verify the potential interaction between 4‑MD and DNA methyltransferase 1 (DNMT1). Tumor‑bearing mice were established and treated with 10 or 30 mg/kg 4‑MD, and tumor volume and weight were recorded. Immunohistochemistry and Prussian blue staining were conducted to examine Ki‑67 expression and iron deposition in tumor tissues, and protein expression was further explored using western blot analysis. The results of the present study revealed that 4‑MD significantly inhibited cell proliferation, migration, invasion and epithelial‑mesenchymal transition in a concentration‑dependent manner. Notably, 4‑MD induced ferroptosis via increased lipid peroxidation, lipid ROS and Fe2+ levels. In addition, it was revealed that 4‑MD can directly bind to DNMT1 to inhibit expression, and inhibit solute carrier family 7 member 11 (SLC7A11; also known as cystine‑glutamate antiporter) and glutathione peroxidase 4 expression. Following DNMT1 overexpression, the observed antitumor activity and ferroptosis‑promoting effects of 4‑MD were partially reversed. Furthermore, 4‑MD significantly inhibited tumor growth in vivo, and reduced tumor volume and weight. In addition, Ki‑67 expression was reduced while iron deposition was increased in the tumor tissues of mice following treatment with 4‑MD. In conclusion, 4‑MD may exhibit anticancer activity through the promotion of DNMT1‑mediated cell ferroptosis. Thus, 4‑MD may have potential as a novel therapeutic agent in the treatment of lung cancer.
Collapse
Affiliation(s)
- Jun Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jinhua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
2
|
Das B, Prusty A, Dutta S, Maulik A, Dahat Y, Kumar D, Tripathy S. Exploring the uncharted seas: Metabolite profiling unleashes the anticancer properties of Oscillatoria salina. Heliyon 2024; 10:e36048. [PMID: 39224332 PMCID: PMC11367535 DOI: 10.1016/j.heliyon.2024.e36048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Marine cyanobacteria offer a rich source of varied natural products with both chemical and biological diversity. Oscillatoria salina (O. salina) is a filamentous non-heterocystous marine cyanobacterium from Oscillatoriaceae family. In this investigation, we have unveiled bioactive extracts from O. salina using two distinct solvent systems, revealing significant anticancer properties. Our assessment of the organic and aqueous extracts (MCE and AE) of O. salina demonstrated pronounced antiproliferative and antimetastatic effects. Notably, this study is the first to elucidate the anticancer and anti-metastatic potential of O. salina extracts in both 2D and 3D cell culture models. Both MCE and AE induced apoptosis, hindered cell proliferation, invasion, and migration in A549 non-small cell lung cancer cells, accompanied by alterations in cell morphology and cytoskeleton collapse. Moreover, MCE and AE induced spheroid disintegration in A549 cells. Transcriptomics analysis highlighted the significant involvement of Rap1 and p53 signaling pathways in mediating the observed antitumor effects. Mass spectroscopy characterization of these extracts identified 11 compounds, some known for their anticancer potential. HPLC analysis of AE revealed six peaks with UV absorption spectra resembling phycocyanin, a cyanobacterial pigment with well-known anticancer activity. Collectively, these findings underscore the anticancer potential of MCE and AE, containing bioactive metabolites with anticancer and antimetastatic properties.
Collapse
Affiliation(s)
- Bornita Das
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Asharani Prusty
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhajeet Dutta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditi Maulik
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Yogita Dahat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Deepak Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Shih FC, Lin CF, Wu YC, Hsu CC, Chen BC, Chang YC, Lin YS, Satria RD, Lin PY, Chen CL. Desmethylclomipramine triggers mitochondrial damage and death in TGF-β-induced mesenchymal type of A549 cells. Life Sci 2024; 351:122817. [PMID: 38871113 DOI: 10.1016/j.lfs.2024.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Lung cancer is the leading cause of cancer deaths, where the metastasis often causes chemodrug resistance and leads to recurrence after treatment. Desmethylclomipramine (DCMI), a bioactive metabolite of clomipramine, shows the therapeutic efficacy with antidepressive agency as well as potential cytostatic effects on lung cancer cells. Here, we demonstrated that DCMI effectively caused transforming growth factor (TGF)-β1-mediated mesenchymal type of A549 cells to undergo mitochondrial death via myeloid cell leukemia-1 (Mcl-1) suppression and activation of truncated Bid (tBid). TGF-β1 induced epithelial mesenchymal transition in A549 cells with the increase of fibronectin and decrease of E-cadherin, the activation of Akt/glycogen synthase kinase-3β (GSK-β)/Mcl-1 axis, and the hypo-responsiveness to cisplatin. DCMI initiated a dose-dependent cytotoxicity on TGF-β1-mediated mesenchymal type of A549 cells through inactivating Akt/GSK-β/Mcl-1 axis, in which mitochondria instability and caspase-9/3 activation also occurred concurrently. Pharmacological inhibition of caspase-8 and cathepsin B partly reversed tBid expression and mitochondrial damage to further attenuate DCMI-mediated cytotoxicity. Additionally, DCMI presented partial therapeutic effects in treating mesenchymal type of A549 tumor bearing nude mice through an acceleration of cancer cell death. Taken together, DCMI exerts antitumor effects via initiating the mechanisms of Akt/GSK-β/Mcl-1 inactivation and cathepsin B/caspase-8-regulated mitochondrial death, which suggests its potential role in mesenchymal type of cancer cell therapy.
Collapse
Affiliation(s)
- Fu-Chia Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Syuan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Division of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Rahmat Dani Satria
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Li Q, Sun Y, Zhai K, Geng B, Dong Z, Ji L, Chen H, Cui Y. Microbiota-induced inflammatory responses in bladder tumors promote epithelial-mesenchymal transition and enhanced immune infiltration. Physiol Genomics 2024; 56:544-554. [PMID: 38808774 DOI: 10.1152/physiolgenomics.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
The intratumoral microbiota can modulate the tumor immune microenvironment (TIME); however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of the bladder (UCB) remains unclear. To address this, we collected samples from 402 patients with UCB, including paired host transcriptome and tumor microbiome data, from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genera Lachnoclostridium and Sutterella in tumors could indirectly promote the EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for the targeted therapy of UCB.NEW & NOTEWORTHY The intratumoral microbiota may mediate the bladder tumor inflammatory response, thereby promoting the epithelial-mesenchymal transition program and influencing tumor immune infiltration.
Collapse
Affiliation(s)
- Qiang Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yichao Sun
- Department of Operating Room, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Kun Zhai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Bingzhi Geng
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Zhenkun Dong
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, People's Republic of China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, People's Republic of China
| | - Hui Chen
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yan Cui
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
5
|
Bo H, Wu Q, Zhu C, Zheng Y, Cheng G, Cui L. PIEZO1 acts as a cancer suppressor by regulating the ROS/Wnt/β-catenin axis. Thorac Cancer 2024; 15:1007-1016. [PMID: 38494915 PMCID: PMC11045336 DOI: 10.1111/1759-7714.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND PIEZO1 works differently in different cancers and at different stages of development. The objective of the current study was to explore the function and underlying mechanism of PIEZO1 in lung adenocarcinoma (LUAD) cells. METHODS Different LUAD cell lines were treated with PIEZO1 inhibitor (GsMTx4) and agonist (Yoda1), and the expression of PIEZO1 in LUAD cells was detected using real-time quantitative PCR (RT-qPCR) and western blotting. The effects of PIEZO1 on invasion, migration and epithelial-mesenchymal transition (EMT) markers protein expression of LUAD cells were detected using the MTT assay, flow cytometry, transwell assay, wound-healing assay, and western blotting. Reactive oxygen species (ROS) agonists (BAY 87-2243) and inhibitors (NAC) and Wnt/β-catenin pathway inhibitors (iCRT3) were selected to treat A549 cells to investigate the mechanism of PIEZO1 on ROS production and Wnt/β-catenin expression in A549 cells. RESULTS In A549, NCI-H1395, and NCI-H1975 cells, GsMTx4 promoted cell proliferation, invasion, migration, upregulated EMT-related marker protein expression, and inhibited cell apoptosis, while Yoda1 exerted effects opposite to those of GsMTx4. In A549 cells, GsMTx4 can reduce ROS production, it also inhibited ROS production, apoptosis, and downregulated proapoptotic markers induced by BAY 87-2243. Importantly, BAY 87-2243 blocked the effect of GSMTX4-induced Wnt/β-catenin overexpression. Similarly, Yoda1 can reduce the effect of NAC. In addition, iCRT3 can block the upregulation of EMT-related marker proteins by GsMTx4, and increase apoptosis and decrease cell invasion and migration. CONCLUSION In summary, PIEZO1 acts as a cancer suppressor by regulating the ROS/Wnt/β-catenin axis, providing a new perspective on the role of mechanosensitive channel proteins in cancer.
Collapse
Affiliation(s)
- Haimei Bo
- Tianjin Medical University General HospitalTianjinChina
- North China University of Science and TechnologyTangshanChina
| | - Qi Wu
- Tianjin Medical University General HospitalTianjinChina
| | - Chaonan Zhu
- North China University of Science and TechnologyTangshanChina
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Yang Zheng
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Guang Cheng
- North China University of Science and TechnologyTangshanChina
| | - Lihua Cui
- North China University of Science and TechnologyTangshanChina
| |
Collapse
|
6
|
Odarenko KV, Zenkova MA, Markov AV. The Nexus of Inflammation-Induced Epithelial-Mesenchymal Transition and Lung Cancer Progression: A Roadmap to Pentacyclic Triterpenoid-Based Therapies. Int J Mol Sci 2023; 24:17325. [PMID: 38139154 PMCID: PMC10743660 DOI: 10.3390/ijms242417325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| |
Collapse
|
7
|
Sumitomo R, Menju T, Shimazu Y, Toyazaki T, Chiba N, Miyamoto H, Hirayama Y, Nishikawa S, Tanaka S, Yutaka Y, Yamada Y, Nakajima D, Ohsumi A, Hamaji M, Sato A, Yoshizawa A, Huang C, Haga H, Date H. M2-like tumor-associated macrophages promote epithelial-mesenchymal transition through the transforming growth factor β/Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma. Cancer Sci 2023; 114:4521-4534. [PMID: 37806311 PMCID: PMC10728010 DOI: 10.1111/cas.15987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) promotes primary tumor progression toward a metastatic state. The role of tumor-associated macrophages (TAMs) in inducing EMT in lung squamous cell carcinoma (LUSC) remains unclear. We aimed to clarify the significance of TAMs in relation to EMT in LUSC. We collected 221 LUSC specimens from patients who had undergone surgery. Immunohistochemistry was performed to evaluate M1-like and M2-like TAM distribution and EMT by E-cadherin and vimentin staining. Human LUSC cell lines (H226 and EBC-1) and a human monocyte cell line (THP-1) were used for in vitro experiments. M2-like polarization of TAMs and EMT marker expression in LUSC cells were evaluated by western blotting. The biological behavior of LUSC cells was evaluated by migration, invasion, and cell proliferation assays. Immunohistochemical analysis showed that 166 (75.1%) tumors were E-cadherin-positive and 44 (19.9%) were vimentin-positive. M2-like TAM density in the tumor stroma was significantly associated with vimentin positivity and worse overall survival. Western blotting demonstrated higher levels of CD163, CD206, vascular endothelial growth factor, and transforming growth factor beta 1 (TGF-β1) in TAMs versus unstimulated macrophages. Furthermore, increased TGF-β1 secretion from TAMs was confirmed by ELISA. TAM-co-cultured H226 and EBC-1 cells exhibited EMT (decreased E-cadherin, increased vimentin). Regarding EMT-activating transcriptional factors, phosphorylated Smad3 and ZEB-family proteins were higher in TAM-co-cultured LUSC cells than in parental cells. TAM-co-cultured H226 and EBC-1 cells demonstrated enhanced migration and invasion capabilities and improved proliferation. Overall, the present study suggests that TAMs can induce EMT with increased metastatic potential and tumor cell proliferation in LUSC.
Collapse
Affiliation(s)
- Ryota Sumitomo
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Thoracic SurgeryTazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yumeta Shimazu
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshiya Toyazaki
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Naohisa Chiba
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideaki Miyamoto
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yutaka Hirayama
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Satona Tanaka
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akihiko Yoshizawa
- Department of Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Cheng‐Long Huang
- Department of Thoracic SurgeryTazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Hironori Haga
- Department of Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
8
|
Ramundo V, Zanirato G, Palazzo ML, Riganti C, Aldieri E. APE-1/Ref-1 Inhibition Blocks Malignant Pleural Mesothelioma Cell Proliferation and Migration: Crosstalk between Oxidative Stress and Epithelial Mesenchymal Transition (EMT) in Driving Carcinogenesis and Metastasis. Int J Mol Sci 2023; 24:12570. [PMID: 37628748 PMCID: PMC10454819 DOI: 10.3390/ijms241612570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM pathogenesis has been related both to oxidative stress, evoked by and in response to asbestos fibers exposure, and epithelial mesenchymal transition (EMT), an event induced by oxidative stress itself and related to cancer proliferation and metastasis. Asbestos-related primary oxidative damage is counteracted in the lungs by various redox-sensitive factors, often hyperactivated in some cancers. Among these redox-sensitive factors, Apurinic-apyrimidinic endonuclease 1 (APE-1)/Redox effector factor 1 (Ref-1) has been demonstrated to be overexpressed in MPM and lung cancer, but the molecular mechanism has not yet been fully understood. Moreover, asbestos exposure has been associated with induced EMT events, via some EMT transcription factors, such as Twist, Zeb-1 and Snail-1, in possible crosstalk with oxidative stress and inflammation events. To demonstrate this hypothesis, we inhibited/silenced Ref-1 in MPM cells; as a consequence, both EMT (Twist, Zeb-1 and Snail-1) markers and cellular migration/proliferation were significantly inhibited. Taken as a whole, these results show, for the first time, crosstalk between oxidative stress and EMT in MPM carcinogenesis and invasiveness, thus improving the knowledge to better address a preventive and therapeutic approach against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Giada Zanirato
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
| |
Collapse
|
9
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
10
|
Lu X, Shen J, Huang S, Liu D, Wang H. Tumor cells-derived exosomal PD-L1 promotes the growth and invasion of lung cancer cells <em>in vitro via</em> mediating macrophages M2 polarization. Eur J Histochem 2023; 67:3784. [PMID: 37526437 PMCID: PMC10476537 DOI: 10.4081/ejh.2023.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Lung cancer originating from the bronchial epithelium is the most common lung malignancy. It has been reported that programmed cell death 1 ligand 1 (PD-L1) and tumor-associated macrophages are closely related to the development of lung cancer. However, whether tumor-derived exosomal PD-L1 could mediate the regulation of macrophage polarization in lung cancer remains unclear. For this research, the level of PD-L1 in normal tissues and lung cancer tissues was evaluated using RT-qPCR. Next, the apoptosis of lung cancer cells was evaluated using flow cytometry assay. Then, the structure and morphology of vesicles were observed using transmission electron microscopy and nanoparticle tracking analysis. Later on, the internalization of exosomes by macrophage was observed using fluorescence microscopy. Our results showed that the level of PD-L1 was upregulated in tumor tissues and lung cancer cells. Knockdown of PD-L1 notably inhibited the viability, migration and invasion of lung cancer cells. In addition, lung cancer cells-derived exosomal PD-L1 could be absorbed by macrophages. Meanwhile, exosomal PD-L1 was able to promote macrophages M2 polarization. Moreover, macrophages M2 polarization induced by exosomal PD-L1 further remarkably promoted the viability, migration, invasion, and epithelial-mesenchymal transition process of lung cancer cells. Collectively, knockdown of PD-L1 notably inhibited the viability, migration and invasion of lung cancer cells. Tumor cell-derived exosomal PD-L1 could promote the growth of lung cancer cells by mediating macrophages M2 polarization. Thus, inhibiting macrophages M2 polarization might be a promoting therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiangjun Lu
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Jian Shen
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Siyuan Huang
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Dongdong Liu
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| | - Haitao Wang
- Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang.
| |
Collapse
|
11
|
Peng J, Yang KY, Li H, Zheng SS, Pan XY. Protein Z modulates the metastasis of lung adenocarcinoma cells. Open Life Sci 2023; 18:20220667. [PMID: 37528887 PMCID: PMC10389673 DOI: 10.1515/biol-2022-0667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
Protein Z (PZ), a vitamin-K-dependent anticoagulant glycoprotein, is reported to be highly expressed in various malignant tissues and correlated with a poor prognosis in patients with lung cancer. This study aimed to investigate the pathological activity of PZ on lung cancer cell migration, invasion, and metastasis. PZ was assessed by Western blot in three non-small-cell lung cancer cell lines (A549, H1299, and H1975). Meanwhile,western blot was used to detect the expression of EMT pathway-related proteins (Slug, Vimentin, and N-cadherin) in the A549 cells knocked down with siRNA. The cellular proliferation, migration, and invasion were detected by Cell Counting Kit (CCK)-8, wound healing, and Transwell assays in the A549 cells. The results showed that PZ expression was higher in A549, H1299, and H1975 cells, according to Western blot. CCK-8, wound healing, and Transwell assays showed that knockdown of PZ significantly decreased cellular proliferation, migration, and invasion, as well as the protein levels of Slug, Vimentin, and N-cadherin in the A549 cells. In conclusion, the pro-metastasis activity of PZ may modulate the epithelial-mesenchymal transition pathway in lung cancer A549 cells.
Collapse
Affiliation(s)
- Jin Peng
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Kai-Ying Yang
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Huan Li
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Shan-Shan Zheng
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| | - Xue-Yi Pan
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nong Lin Road, Yuexiu District, Guangzhou 510080Guangdong, China
| |
Collapse
|
12
|
Feng X, Duan Y, Lv X, Li Q, Liang B, Ou X. The Impact of Lung Cancer in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE). J Clin Med 2023; 12:jcm12031100. [PMID: 36769748 PMCID: PMC9917551 DOI: 10.3390/jcm12031100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/02/2023] Open
Abstract
Given the high risk of lung cancer (LC) in patients with combined pulmonary fibrosis and emphysema (CPFE), and the difficulty of early diagnosis, it is important to understand the impact of LC in these patients. The effect of LC on the development of acute exacerbation (AE) as a natural course of CPFE is still unknown. We retrospectively reviewed medical records of patients at the West China Hospital and enrolled 59 patients with CPFE combined with LC and 68 CPFE patients without LC for initial diagnosis matched in the same period. We compared the clinical characteristics and imaging features of CPFE patients with LC and without LC, and analyzed the associated factors for the prevalence of LC using binary logistic regression. Cox proportional hazards regression analysis was performed to explore risk factors of AE as a natural course of CPFE. Patients with CPFE combined with LC were more common among elderly male smokers. The most common pathological type of tumor was adenocarcinoma (24/59, 40.7%) and squamous cell carcinoma (18/59, 30.5%). Compared with those in the without LC group, the proportions of men, and ex- or current smokers, and the levels of smoking pack-years, serum CRP, IL-6, fibrinogen, complement C3 and C4 in patients with LC were significantly higher (p < 0.05). There was no significant difference in the proportion of natural-course-related AE (10.2% vs. 16.2%, p > 0.05) between the two groups. Logistic regression analysis demonstrated that pack-years ≥ 20 (OR: 3.672, 95% CI: 1.165-11.579), family history of cancer (OR: 8.353, 95% CI: 2.368-10.417), the level of fibrinogen > 4.81 g/L (OR: 3.628, 95% CI: 1.403-9.385) and serum C3 > 1.00 g/L (OR: 5.299, 95% CI: 1.727-16.263) were independently associated with LC in patients with CPFE. Compared to those without AE, CPFE patients with AE had significantly higher levels of PLR and serum CRP, with obviously lower DLCO and VC. The obviously increased PLR (HR: 3.731, 95% CI: 1.288-10.813), and decreased DLCO%pred (HR: 0.919, 95% CI: 0.863-0.979) and VC%pred (HR: 0.577, 95% CI: 0.137-0.918) rather than the presence of LC independently contributed to the development of natural-course-related AE in patients with CPFE. Pack-years, family history of cancer, the levels of fibrinogen and serum C3 were independently associated with LC in patients with CPFE. The presence of LC did not significantly increase the risk of AE as a natural course of CPFE. Clinicians should give high priority to CPFE patients, especially those with more severe fibrosis and systemic inflammation, in order to be alert for the occurrence of AE.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yishan Duan
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiafei Lv
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qinxue Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Binmiao Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xuemei Ou
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
13
|
Ishikawa H, Menju T, Toyazaki T, Miyamoto H, Chiba N, Noguchi M, Tamari S, Miyata R, Yutaka Y, Tanaka S, Yamada Y, Nakajima D, Ohsumi A, Hamaji M, Okuno Y, Date H. A novel cell-based assay for the high-throughput screening of epithelial-mesenchymal transition inhibitors: Identification of approved and investigational drugs that inhibit epithelial-mesenchymal transition. Lung Cancer 2023; 175:36-46. [PMID: 36450215 DOI: 10.1016/j.lungcan.2022.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Lung cancer with distant metastases is associated with a very poor prognosis, and epithelial-mesenchymal transition (EMT) contributes to cancer metastasis. Therefore, elucidation and inhibition of EMT signaling in lung cancer may be a new therapeutic strategy for improving the prognosis of patients. We constructed a high-throughput screening system for EMT inhibitors. Using this system, we aimed to identify compounds that indeed inhibit EMT. MATERIALS AND METHODS We generated a luciferase reporter cell line using A549 human lung cancer cells and E-cadherin or vimentin as EMT markers. EMT was induced by transforming growth factor β1 (TGF-β1), and candidate EMT inhibitors were screened from a library of 2,350 compounds. The selected compounds were further tested using secondary assays to verify the inhibition of EMT and invasive capacity of cells. RESULTS Values obtained by the assay were adjusted for the number of viable cells and scored by determining the difference between mean values of the positive and negative control groups. Four compounds were identified as novel candidate drugs. Among those, one (avagacestat) and two compounds (GDC-0879 and levothyroxine) improved the expression of E-cadherin and vimentin, respectively, in epithelial cells. GDC-0879 and levothyroxine also significantly inhibited the invasive capacity of cells. CONCLUSION We systematically screened approved, investigational, and druggable compounds with inhibitory effects using a reporter assay, and identified candidate drugs for EMT inhibition.
Collapse
Affiliation(s)
- Hiroyuki Ishikawa
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Toshiya Toyazaki
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideaki Miyamoto
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naohisa Chiba
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Misa Noguchi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shigeyuki Tamari
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryo Miyata
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukiko Okuno
- The Drug Discovery Center, Medical Research Support, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
14
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
15
|
Comprehensive analysis of cuproptosis-related genes in prognosis, tumor microenvironment infiltration, and immunotherapy response in gastric cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04474-4. [DOI: 10.1007/s00432-022-04474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022]
|
16
|
Hao Y, Li Z, Chang M, Zhang X. Effects of Salidroside Combined with Paclitaxel on Proliferation, Migration, and Epithelial Mesenchyme of Colorectal Cancer Cells. Drug Des Devel Ther 2022; 16:4079-4089. [PMID: 36465266 PMCID: PMC9716943 DOI: 10.2147/dddt.s384151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/16/2022] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a multifactorial disease and one of the most common malignancies worldwide. Salidroside (Sal) is a plant with a wide range of pharmacological effects and plays an important role in the treatment of many diseases, and is considered a new hope for the treatment of tumors. The purpose of this study was to investigate the effect of the combination of Sal and paclitaxel (Pac) on colorectal cancer cells and its mechanism of action. METHODS The effects of different mass concentrations of Sal, Pac, and the combination intervened in the cells for 48 h were examined using the CCK8 method. The inhibition rate was obtained, and the optimal concentration of the respective drug group was screened. The proliferative capacity of the respective group was obtained. Subsequently, the results of apoptosis, cloning, migration, invasion, and angiogenesis were observed through cell morphological analysis (shape observation and Hoechst staining), colony formation assay, cell scratching assay, Transwell, angiogenesis assay, and protein immunoblotting (Western blotting) to detect the expression of epithelial-mesenchymal transition (EMT)-associated proteins and PI3K pathway-associated proteins. RESULTS Different concentrations of Sal, Pac, and the combined application had significant effects in inhibiting cells in a concentration-dependent manner. Compared with the control group, the Sal group, the Pac group, and the combination group significantly inhibited the clonal number, migration, invasion, and tube-forming ability of colorectal cancer cells. Besides, the combined application had a better effect than the Sal and Pac groups. The apoptosis level was up-regulated in all drug groups, and the up-regulation was more significant in the combination group. The expression of E-cad protein was up-regulated, the expression of N-cad and Vim protein was down-regulated, and the expression of PI3K and AKT phosphorylation was down-regulated in the respective group, and the difference was more significant in the combination group compared with the group of individual drugs. CONCLUSION The combined application of Sal and Pac significantly can decrease the survival rate of colorectal cancer cells, and the mechanism may be correlated with the blocking of the PI3K/AKT pathway, thus inhibiting EMT.
Collapse
Affiliation(s)
- Yanjiao Hao
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| | - Zhiyu Li
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| | - Mingzhi Chang
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| | - Xiaoli Zhang
- Department of Life Science Research Center, College of Basic Medicine, Hebei North University, Zhangjiakou, Hebei, 075000, People’s Republic of China
| |
Collapse
|
17
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
18
|
Bai R, Zhang J, He F, Li Y, Dai P, Huang Z, Han L, Wang Z, Gong Y, Xie C. GPR87 promotes tumor cell invasion and mediates the immunogenomic landscape of lung adenocarcinoma. Commun Biol 2022; 5:663. [PMID: 35790819 PMCID: PMC9256611 DOI: 10.1038/s42003-022-03506-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study is to examine the association between G protein-coupled receptor 87 (GPR87) and lung adenocarcinoma (LUAD) metastasis and immune infiltration. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets extract clinical data. According to the TCGA database, increased GPR87 expression predicts poor overall survival, progression-free interval, and disease-specific survival in LUAD patients. The meta-analysis also reveals a significant association between high GPR87 expression and poor overall survival. Moreover, functional experiments demonstrate that GPR87 silencing reduces LUAD cell invasion and migration. Immunoblotting shows that GPR87 knockdown decreased Vimentin and N-cadherin expression and increased E-cadherin expression in LUAD cells. GPR87 expression in LUAD is positively correlated with immune infiltration. In addition, GPR87 expression is associated with immune and chemotherapy resistance in LUAD patients. Our findings indicate that GPR87 promotes tumor progression and is correlated with immune infiltration, suggesting GPR87 as a possible biomarker for prognosis prediction in LUAD. GPR87 is reported as a central player in lung adenocarcinoma and in resistance to immunotherapy, by promoting tumor cell invasion and mediating the immunogenomic landscape.
Collapse
|
19
|
Peng W, Chen J, Xiao Y, Su G, Chen Y, Cui Z. Cancer-Testis Antigen LDH-C4 in Tissue, Serum, and Serum-Derived Exosomes Serves as a Promising Biomarker in Lung Adenocarcinoma. Front Oncol 2022; 12:912624. [PMID: 35814471 PMCID: PMC9263124 DOI: 10.3389/fonc.2022.912624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Objective As a cancer-testis antigen (CTA), human lactate dehydrogenase C4 (LDH-C4) enzyme protein encoded by the LDHC gene has been reported to be involved in the occurrence and development of various malignancies, while its expression and clinical significance in lung adenocarcinoma (LUAD) remain unclear. This study aims to investigate the expression of LDH-C4 in LUAD and its diagnostic and prognostic value. Methods The mRNA and protein levels of LDH-C4 in LUAD and adjacent normal tissues were analyzed based on the UALCAN database, and the prognostic significance was assessed using the LOGpc database. The LDHC mRNA level in serum and serum secretion of LUAD patients was determined by quantitative real-time PCR (qRT-PCR). Based on the high-throughput LUAD tissue chip combined with immunohistochemistry (IHC), the protein level of LDH-C4 in LUAD tissues was measured, and its correlation with clinicopathological features and prognosis was analyzed. Results LDHC expression was upregulated in LUAD, which was related to the clinical stage and poor prognosis of patients. The positive rates of LDHC mRNA expression in serum and exosome of LUAD patients were 78.3% and 66.7%, respectively. The area under the curve (AUC) of serum and exosomal LDHC in the diagnosis of LUAD was 0.8121 and 0.8925, respectively. The expression of LDHC in serum and serum-derived exosomes from LUAD patients was negatively correlated with medical treatment and positively correlated with the recurrence of LUAD. The positive expression rate of LDH-C4 in LUAD tissues was 96.7% (89/92), which was significantly higher than that in adjacent normal tissues 22.6% (19/84) (p < 0.001). The median overall survival (OS) time of patients with a high expression of LDH-C4 was significantly shorter than that of patients with low expression (34 months versus 62 months) (p = 0.016). Further relative risk analysis exhibited that the expression of LDH-C4 was an independent prognostic factor of OS in patients with LUAD. Conclusions LDHC/LDH-C4 expression was upregulated in LUAD, and LDH-C4 could be used as a molecular indicator of the prognosis of LUAD. Serum and serum-derived exosomes of LDHC can be used as an important biomarker for the diagnosis, efficacy evaluation, and recurrence monitoring of LUAD.
Collapse
Affiliation(s)
| | | | | | | | - Yan Chen
- *Correspondence: Zhaolei Cui, ; Yan Chen,
| | | |
Collapse
|
20
|
Zhang R, Li S, Lan J, Li C, Du X, Dong W, Yu Q, Wang D. CNTN-1 Upregulation Induced by Low-Dose Cisplatin Promotes Malignant Progression of Lung Adenocarcinoma Cells via Activation of Epithelial-Mesenchymal Transition. Front Genet 2022; 13:891665. [PMID: 35711928 PMCID: PMC9196332 DOI: 10.3389/fgene.2022.891665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor metastasis and invasion are the main impediments to lung adenocarcinoma successful treatment. Previous studies demonstrate that chemotherapeutic agents can elevate the malignancy of cancer cells other than their therapeutic effects. In this study, the effects of transient low-dose cisplatin treatment on the malignant development of lung adenocarcinoma cells (A549) were detected, and the underlying epigenetic mechanisms were investigated. The findings showed that A549 cells exhibited epithelial-mesenchymal transition (EMT)-like phenotype along with malignant progression under the transient low-dose cisplatin treatment. Meanwhile, low-dose cisplatin was found to induce contactin-1 (CNTN-1) upregulation in A549 cells. Subsequently, we found that further overexpressing CNTN-1 in A549 cells obviously activated the EMT process in vitro and in vivo, and caused malignant development of A549 cells in vitro. Taken together, we conclude that low-dose cisplatin can activate the EMT process and resulting malignant progression through upregulating CNTN-1 in A549 cells. The findings provided new evidence that a low concentration of chemotherapeutic agents could facilitate the malignancy of carcinoma cells via activating the EMT process other than their therapeutic effects.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Lan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changyi Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianzhi Du
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weijie Dong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Yamaguchi T, Yoshimura T, Ohara T, Fujisawa M, Tong G, Matsukawa A. PolyI:C suppresses TGF-β1-induced Akt phosphorylation and reduces the motility of A549 lung carcinoma cells. Mol Biol Rep 2021; 48:6313-6321. [PMID: 34390443 DOI: 10.1007/s11033-021-06625-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUNDS Epithelial mesenchymal transition (EMT) is a critical process involved in the invasion and metastasis of cancer, including lung cancer (LC). Transforming growth factor (TGF)-β is one of factors capable of inducing EMT. Polyinosinic-polycytidylic acid (polyI:C), a synthetic agonist for toll-like receptor (TLR) 3, can enhance immune responses and has been used as an adjuvant for cancer vaccines; however, it remains unclear whether it influences other process, such as EMT. In the present study, we examined the effects of polyI:C on TGF-β-treated A549 human LC cells. METHODS AND RESULTS By in vitro cell proliferation assay, polyI:C showed no effect on the growth of A549 cells treated with TGF-β1 at the concentration range up to 10 μg/ml; however, it markedly suppressed the motility in a cell scratch and a cell invasion assay. By Western blotting, polyI:C dramatically decreased TGF-β1-induced Ak strain transforming (Akt) phosphorylation and increased phosphatase and tensin homologue (PTEN) expression without affecting the Son of mothers against decapentaplegic (Smad) 3 phosphorylation or the expression level of E-cadherin, N-cadherin or Snail, indicating that polyI:C suppressed cell motility independently of the 'cadherin switching'. The Akt inhibitor perifosine inhibited TGF-β1-induced cell invasion, and the PTEN-specific inhibitor VO-OHpic appeared to reverse the inhibitory effect of polyI:C. CONCLUSION PolyI:C has a novel function to suppress the motility of LC cells undergoing EMT by targeting the phosphatidylinositol 3-kinase/Akt pathway partly via PTEN and may prevent or reduce the metastasis of LC cells.
Collapse
Affiliation(s)
- Takahiro Yamaguchi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Gao Tong
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|