1
|
Bu Y, Sun Z, Tao Y, Zhao X, Zhao Y, Liang Y, Hang X, Han L. The synergistic effect of high temperature and relative humidity on non-accidental deaths at different urbanization levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173612. [PMID: 38823719 DOI: 10.1016/j.scitotenv.2024.173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Numerous studies have examined the impact of temperature on mortality, yet research on the combined effect of temperature and humidity on non-accidental deaths remains limited. This study investigates the synergistic impact of high temperature and humidity on non-accidental deaths in China, assessing the influence of urban development and urbanization level. Utilizing the distributed lag nonlinear model (DLNM) of quasi-Poisson regression, we analyzed the relationship between Wet Bulb Globe Temperature (WBGT) and non-accidental deaths in 30 Chinese cities from 2010 to 2016, including Guangzhou during 2012-2016. We stratified temperature and humidity across these cities to evaluate the influence of varying humidity levels on deaths under high temperatures. Then, we graded the duration of heat and humidity in these cities to assess the impact of deaths with different durations. Additionally, the cities were categorized based on gross domestic product (GDP), and a vulnerability index was calculated to examine the impact of urban development and urbanization level on non-accidental deaths. Our findings reveal a pronounced synergistic effect of high temperature and humidity on non-accidental deaths, particularly at elevated humidity levels. The synergies of high temperature and humidity are extremely complex. Moreover, the longer the duration of high temperature and humidity, the higher the risk of non-accidental death. Furthermore, areas with higher urbanization exhibited lower relative risks (RR) associated with the synergistic effects of heat and humidity. Consequently, it is imperative to focus on damp-heat related mortality among vulnerable populations in less developed regions.
Collapse
Affiliation(s)
- Yaqin Bu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Zhaobin Sun
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China.
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuxin Zhao
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Yinglin Liang
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Xiaoyi Hang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
2
|
Niu YL, Lu F, Liu XJ, Wang J, Liu DL, Liu QY, Yang J. Global climate change: Effects of future temperatures on emergency department visits for mental disorders in Beijing, China. ENVIRONMENTAL RESEARCH 2024; 252:119044. [PMID: 38697599 DOI: 10.1016/j.envres.2024.119044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Rising temperatures can increase the risk of mental disorders. As climate change intensifies, the future disease burden due to mental disorders may be underestimated. Using data on the number of daily emergency department visits for mental disorders at 30 hospitals in Beijing, China during 2016-2018, the relationship between daily mean temperature and such visits was assessed using a quasi-Poisson model integrated with a distributed lag nonlinear model. Emergency department visits for mental disorders attributed to temperature changes were projected using 26 general circulation models under four climate change scenarios. Stratification analyses were then conducted by disease subtype, sex, and age. The results indicate that the temperature-related health burden from mental disorders was projected to increase consistently throughout the 21st century, mainly driven by high temperatures. The future temperature-related health burden was higher for patients with mental disorders due to the use of psychoactive substances and schizophrenia as well as for women and those aged <65 years. These findings enhance our knowledge of how climate change could affect mental well-being and can be used to advance and refine targeted approaches to mitigating and adapting to climate change with a view on addressing mental disorders.
Collapse
Affiliation(s)
- Yan-Lin Niu
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, 100013 Beijing, China
| | - Feng Lu
- Beijing Municipal Health Big Data and Policy Research Center, 100034 Beijing, China
| | - Xue-Jiao Liu
- Department of Medical Record Management and Statistics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Jun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, NSW 2650, Australia; Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qi-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, 511436 Guangzhou, China.
| |
Collapse
|