• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4615184)   Today's Articles (5720)   Subscriber (49391)
For: Al-zoubi H, Omar W. Rejection of salt mixtures from high saline by nanofiltration membranes. KOREAN J CHEM ENG 2009;26:799-805. [DOI: 10.1007/s11814-009-0133-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Number Cited by Other Article(s)
1
Jeong N, Epsztein R, Wang R, Park S, Lin S, Tong T. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:17851-17862. [PMID: 36917705 DOI: 10.1021/acs.est.2c08384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
2
Mahmoud AED, Mostafa E. Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. MEMBRANES 2023;13:789. [PMID: 37755211 PMCID: PMC10538012 DOI: 10.3390/membranes13090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
3
Application of ultra/nano filtration membrane in uranium rejection from fresh and salt waters. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
4
Nieminen J, Anugwom I, Pihlajamäki A, Mänttäri M. TEMPO-mediated oxidation as surface modification for cellulosic ultrafiltration membranes: Enhancement of ion rejection and permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
5
Jakata N, Majozi T. A Superstructure Based Optimization Approach for Regeneration Reuse of Water Network: Optimal Design of a Detailed Nanofiltration Regenerator Network. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.755467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
6
Butt FS, Lewis A, Chen T, Mazlan NA, Wei X, Hayer J, Chen S, Han J, Yang Y, Yang S, Huang Y. Lithium Harvesting from the Most Abundant Primary and Secondary Sources: A Comparative Study on Conventional and Membrane Technologies. MEMBRANES 2022;12:membranes12040373. [PMID: 35448344 PMCID: PMC9025773 DOI: 10.3390/membranes12040373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
7
Chugunov AS, Vinnitskii VA, Stepanyuk KV. Effect of the Sodium Chloride–Magnesium Chloride Ratio on the Separation of Salts Using a Nanofiltration Membrane. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
8
S E, G A, A F I, P S G, Y LT. Review on characteristics of biomaterial and nanomaterials based polymeric nanocomposite membranes for seawater treatment application. ENVIRONMENTAL RESEARCH 2021;197:111177. [PMID: 33864792 DOI: 10.1016/j.envres.2021.111177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
9
Removal of Sulfadiazine by Polyamide Nanofiltration Membranes: Measurement, Modeling, and Mechanisms. MEMBRANES 2021;11:membranes11020104. [PMID: 33540550 PMCID: PMC7912794 DOI: 10.3390/membranes11020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
10
Cao XL, Zhou FY, Cai J, Zhao Y, Liu ML, Xu L, Sun SP. High-permeability and anti-fouling nanofiltration membranes decorated by asymmetric organic phosphate. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118667] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
11
Alghamdi MM, El‐Zahhar AA. Novel cellulose acetate propionate‐halloysite composite membranes with improved permeation flux, salt rejection, and antifouling properties. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
12
Aguilar S, Bustillos S, Xue S, Ji CH, Mak WH, Rao E, McVerry BT, La Plante EC, Simonetti D, Sant G, Kaner RB. Enhancing Polyvalent Cation Rejection Using Perfluorophenylazide-Grafted-Copolymer Membrane Coatings. ACS APPLIED MATERIALS & INTERFACES 2020;12:42030-42040. [PMID: 32876431 DOI: 10.1021/acsami.0c07111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
13
Cai J, Cao XL, Zhao Y, Zhou FY, Cui Z, Wang Y, Sun SP. The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
14
Ergün A, Tümer EH, Cengiz HY, Deligöz H. Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
15
Cao X, Guo J, Cai J, Liu M, Japip S, Xing W, Sun S. The encouraging improvement of polyamide nanofiltration membrane by cucurbituril‐based host–guest chemistry. AIChE J 2019. [DOI: 10.1002/aic.16879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
16
Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117396] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
17
Phenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potential. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
18
Andalaft J, Schwarz A, Pino L, Fuentes P, Bórquez R, Aybar M. Assessment and Modeling of Nanofiltration of Acid Mine Drainage. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.052] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
20
Qian J, Liu X, Yan R, Li C, Zhang X, Zhang S. Effect of Ion Cluster on Concentration of Long-Alkyl-Chain Ionic Liquids Aqueous Solution by Nanofiltration. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Koo CH, Lau WJ, Lai GS, Lai SO, Thiam HS, Ismail AF. Thin-Film Nanocomposite Nanofiltration Membranes Incorporated with Graphene Oxide for Phosphorus Removal. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201700357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
22
Yan ZQ, Zeng LM, Li Q, Liu TY, Matsuyama H, Wang XL. Selective separation of chloride and sulfate by nanofiltration for high saline wastewater recycling. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.04.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
23
Concentration of ionic liquids by nanofiltration for recycling: Filtration behavior and modeling. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
24
Diallo MA, Diop SN, Diémé MM, Diawara CK. Efficiency of Nanofiltration Membrane TFC-SR3 and SelRo MPF-34 for Partial Elimination of Fluoride and Salinity from Drinking Water. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jwarp.2015.77043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
25
Park HR, Nam SW, Youm KH. Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion. KOREAN CHEMICAL ENGINEERING RESEARCH 2014. [DOI: 10.9713/kcer.2014.52.2.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
26
Kappel C, Kemperman A, Temmink H, Zwijnenburg A, Rijnaarts H, Nijmeijer K. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
27
Song J, Li XM, Figoli A, Huang H, Pan C, He T, Jiang B. Composite hollow fiber nanofiltration membranes for recovery of glyphosate from saline wastewater. WATER RESEARCH 2013;47:2065-74. [PMID: 23399077 DOI: 10.1016/j.watres.2013.01.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 11/06/2012] [Accepted: 01/20/2013] [Indexed: 05/28/2023]
28
Perez-Moreno V, Bonilla-Suarez CB, Fortanell-Trejo M, Pedraza-Aboytes G. Seawater Desalination Using Modified Ceramic Membranes. Ind Eng Chem Res 2011. [DOI: 10.1021/ie2009313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Diawara CK, Diop SN, Diallo MA, Farcy M, Deratani A. Performance of Nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO) Membranes in the Removal of Fluorine and Salinity from Brackish Drinking Water. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jwarp.2011.312101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
30
Al-Zoubi H, Rieger A, Steinberger P, Pelz W, Haseneder R, Härtel G. Optimization Study for Treatment of Acid Mine Drainage Using Membrane Technology. SEP SCI TECHNOL 2010. [DOI: 10.1080/01496395.2010.480963] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA