1
|
Masood Ul Hasan I, Javed H, Hussain MM, Shakoor MB, Bibi I, Shahid M, Xu N, Wei Q, Qiao J, Niazi NK. Biochar/nano-zerovalent zinc-based materials for arsenic removal from contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1155-1164. [PMID: 36355569 DOI: 10.1080/15226514.2022.2140778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we explored the potential of a newly prepared nano-zero valent zinc (nZVZn), biochar (BC)/nZVZn and BC/hydroxyapatite-alginate (BC/HA-alginate) composites for the removal of inorganic As species from water. Relatively, higher percentage removal of As(III) and As(V) was obtained by nZVZn at pH 3.4 (96% and 94%, respectively) compared to BC/nZVZn (90% and 88%) and BC/HA-alginate (88% and 80%) at pH 7.2. Freundlich model provided the best fit (R2 = up to 0.98) for As(III) and As(V) sorption data of all the sorbents, notably for nZVZn. The pseudo-second order model well-described kinetics of As(III) and As(V) (R2 = 0.99) sorption on all the sorbents. The desorption experiments demonstrated that the As removal efficiency, up to the third sorption/desorption cycle, was in the order of nZVZn ∼ BC/HA-alginate (88%) > BC/nZVZn (84%). The Fourier transform infrared spectroscopy depicted that the -OH, -COOH, Zn-O and Zn-OH surface functional groups were responsible for the sorption of As(III) or As(V) on the sorbents investigated here. This study highlights that removal of As species from water by BC/nZVZn composite can be compared with nZVZn, suggesting that integrating BC with nZVZn could efficiently remove As from As-contaminated drinking water.
Collapse
Affiliation(s)
- Israr Masood Ul Hasan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Haram Javed
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nengneng Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Qunshan Wei
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Su JF, Yang S, Huang TL, Bai XC, Lu JS, He L, Li M. Mechanism of the simultaneous removal of nitrate and Ni(II) by Enterobacter sp. CC76 through mixotrophic denitrification processes. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0298-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
El-Nahas S, Salman HM, Seleeme WA. Aluminum Building Scrap Wire, Take-Out Food Container, Potato Peels and Bagasse as Valueless Waste Materials for Nitrate Removal from Water supplies. CHEMISTRY AFRICA 2018. [DOI: 10.1007/s42250-018-00032-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Fan L, Wang S, Liu Y, Yang W, Hou X, Su Y, Zhao Y, Zhou X, Chen Q, Liu Y. Selective reduction of NO3−-N from wastewater to N2 by Zn/Ag bimetallic particles combined with wet ammonia oxidation process. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Fang Y, Wen J, Zeng G, Shen M, Cao W, Gong J, Zhang Y. From nZVI to SNCs: development of a better material for pollutant removal in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6175-6195. [PMID: 29308574 DOI: 10.1007/s11356-017-1143-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Nanoscale zero-valent iron (nZVI), with its reductive potentials and wide availability, offers degradative remediation for environmental pollutants. However, weaknesses such as easy aggregation, easy oxidation, and nanoscale size have hindered its further applications in the environment to some extent. Therefore, various supported nZVI composites (SNCs) with higher dispersibility, enhanced water stability, and tunable size have been developed to overcome the weaknesses. SNCs family is a great alternative for water purification applications that require high removal efficiency and rapid kinetics, as a result of their multifunctional properties and magnetic separation capacity. In this review, we compare the advantages of SNCs to nZVI for pollutant removal in water, discuss for the first time the synthetic techniques of obtaining SNCs, and analyze the influencing factors and mechanisms associated with the removal of some typical hazardous pollutants (e.g., dyes, heavy metals, nitrogen, and phosphorus) using SNCs. Moreover, limitations and future research needs of such material are discussed. More attention should be paid to the evaluation of toxicity, development of green synthetic routes, and potential application areas of such materials in future research.
Collapse
Affiliation(s)
- Ying Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
8
|
Ma F, Du HT, Wang Q, Li RH, Zhang ZQ. Preparation of Pyridinium-Functionalized Magnetic Adsorbent and Its Application for Nitrate Removal from Aqueous Solution. WATER, AIR, & SOIL POLLUTION 2015; 226:212. [DOI: 10.1007/s11270-015-2470-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
9
|
Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Hosseinpour M. Removal of strontium ions from nuclear waste using synthesized MnO2-ZrO2 nano-composite by hydrothermal method in supercritical condition. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0249-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|