Tiwari A, Shukla A, Tiwari D, Lee SM. Synthesis and characterization of Ag
0(NPs)/TiO
2 nanocomposite: insight studies of triclosan removal from aqueous solutions.
ENVIRONMENTAL TECHNOLOGY 2020;
41:3500-3514. [PMID:
31074687 DOI:
10.1080/09593330.2019.1615127]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Nanocomposite mesoporous Ag0(NPs)/TiO2 thin film materials were synthesized and assessed for its efficient application in the elimination of potentially important drug triclosan from aqueous solutions. A template synthesis using the polyethylene glycol was enabled to obtain Ag0(NPs)/TiO2 nanocomposite materials where zerovalent Ag was in situ doped to the titania network. The nanocomposite materials were characterized by the scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), EDX elemental mapping, X-ray diffraction (XRD) analyses and Brunauer-Emmett-Teller (BET) methods. Further, the diffuse reflectance spectroscopy (DRS) was introduced to estimate the band gap of these solids. The thin film materials were subjected to the remediation of water contaminated with triclosan using the UV-A light. The oxidative elimination of triclosan was demonstrated as a function of pH, concentration of triclosan and presence of several co-existing ions. Increase in pH (4.0-10.0) and triclosan concentrations (0.5-15.0 mg/L) had decreased significantly the percentage degradation of triclosan. The pseudo-first-order kinetics was shown in the degradation of triclosan and rate constant was significantly decreased with the increase in pollutant concentration (0.5-15.0 mg/L) and pH (4.0-10.0). The 1000 times presence of scavengers showed that •OH were, predominantly, caused the oxidation of triclosan. Moreover, multiple application of nanocomposite Ag0(NPs)/TiO2(B) revealed that the thin film was fairly intact since the photocatalytic efficiency of triclosan removal was almost unaffected.
Collapse