1
|
Simultaneous oxidation absorption of NO and Hg0 using biomass carbon- activated Oxone system under synergism of high temperature. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
Sharif HMA, Ali M, Mahmood A, Asif MB, Din MAU, Sillanpää M, Mahmood A, Yang B. Separation of Fe from wastewater and its use for NO x reduction; a sustainable approach for environmental remediation. CHEMOSPHERE 2022; 303:135103. [PMID: 35623439 DOI: 10.1016/j.chemosphere.2022.135103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The nitrogen and sulphur oxide (NOx and SO2) emissions are causing a serious threat to the existence of life on earth, requiring their effective removal for a sustainable future. Among various approaches, catalytic or electrochemical reduction of air pollutants (NOx) has gained much attention due to its high efficiency and the possibility of converting these gases into valuable products. However, the required catalysts are generally synthesized from lab-grade chemicals, which may not be a sustainable approach. Herein, a sustainable approach is presented to synthesize an efficient iron-based catalyst directly from industrial/lake wastewater (WW) for NOx-reduction. According to the theoretical calculations and experimental results, Fe-ions could be readily recovered from wastewater because it has the best adsorption efficiency among all other co-existing metals (Ni2+, Cd2+, Co2+, Cu2+, and Cr6+). The subsequent experimental investigations confirmed the preferential Fe adsorption from different WW streams to develop Fe3O4@EDTA-Fe composite, whereby Fe3O4 could be used due to its high recycling ability, and ethylenediaminetetraacetic acid (EDTA) acted as a chelating agent to adsorb Fe-metal from effluents. The Fe3O4@EDTA-Fe exhibited high efficiency (≥87%) for NOx reduction even in the presence of high-degree oxygen contents (10-12%). Moreover, Fe3O4-EDTA-Fe showed excellent long-term stability for 24 h and maintained more than 80% NOx reduction. The fabricated catalyst has a great potential for executing a dual role simultaneously for Fe-recovery and NOx removal, promoting the circular economy concept and providing a potentially sustainable remediation approach for large-scale applications.
Collapse
Affiliation(s)
| | - Moazzam Ali
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Ayyaz Mahmood
- College of Physics and Optical Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Australia.
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
3
|
Guo W, Lin Y, Chen S, Diao Z. Catalytic Decomposition of H
2
O
2
for NO Oxidation‐Removal over Hierarchical Fe‐ZSM‐5: Effect of Ethanol on Zeolite Performance. ChemistrySelect 2022. [DOI: 10.1002/slct.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wen Guo
- School of Chemical Engineering Changchun University of Technology Changchun Jilin 130012 China
- Advanced Institute of Materials Science Changchun University of Technology Changchun Jilin 130012 China
| | - Yuanhang Lin
- School of Chemical Engineering Changchun University of Technology Changchun Jilin 130012 China
| | - Siqi Chen
- School of Chemical Engineering Changchun University of Technology Changchun Jilin 130012 China
| | - Zhenheng Diao
- School of Chemical Engineering Changchun University of Technology Changchun Jilin 130012 China
- Advanced Institute of Materials Science Changchun University of Technology Changchun Jilin 130012 China
| |
Collapse
|
4
|
Quantum chemistry study on the formation of OH radical for NO oxidation by heterogeneous Fenton reaction. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Ma S, Bie X, Gong C, Qu B, Liu D. Scale-up experiments of SO 2 removal and the promoting behavior of NO in moving beds at medium temperatures. RSC Adv 2021; 11:8846-8856. [PMID: 35423385 PMCID: PMC8695364 DOI: 10.1039/d0ra10164h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
The dry flue gas desulfurization (FGD) method was studied, which is a part of the integrated removal of multi-pollutants at medium temperatures. Although dry flue gas treatment is a simple and effective method, it is still a highly empirical-led application technology. A superior desulfurization adsorbent, fine powder of NaHCO3 (hereinafter called fine NaHCO3), was selected by scale-up experiments. A deep understanding of the reaction process and mechanism is then explored, which helps the further optimization of dry desulfurization. Based on the multi-factor experiments for NaHCO3, the effect mechanism of NO on desulfurization using NaHCO3 is also proposed. The conversion of SO32− → SO42− is promoted by the existence of NO. Therefore, a slight decline can be found. According to the influences of the SO2 concentration and the residence time, it is concluded that the diffusion of SO2 into the channel of NaHCO3 is the rate-limiting step. Impressively, the reaction process of reactants was clearly studied by in situ FTIR spectroscopy to determine the whole process. Moreover, the recycling of NaHCO3 is the main direction for reducing adsorbent consumption in the next step. The predictable insights are beneficial for profoundly understanding the gas composition synergetic interaction for the SO2 removal by the dry treatment using NaHCO3. A superior desulfurizer, fine NaHCO3 was selected by scale-up experiments. A deep understanding of the reaction process and mechanism was explored. The effect mechanism of NO on desulfurization using NaHCO3 was proposed by in situ FTIR results.![]()
Collapse
Affiliation(s)
- Shuangchen Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 PR China +86-312-7525521 +86-312-7525521.,MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University Beijing 102206 PR China
| | - Xuan Bie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 PR China +86-312-7525521 +86-312-7525521.,MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University Beijing 102206 PR China
| | - Chunqin Gong
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 PR China +86-312-7525521 +86-312-7525521
| | - Baozhong Qu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 PR China +86-312-7525521 +86-312-7525521
| | - Daokuan Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 PR China +86-312-7525521 +86-312-7525521
| |
Collapse
|
6
|
Chen H, Wang C, Zhang J, Shi Y, Liu Y, Qian Z. NO x attenuation in flue gas by •OH/SO 4•--based advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37468-37487. [PMID: 32681339 DOI: 10.1007/s11356-020-09782-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The combustion of fossil fuels has resulted in rapidly increasing emissions of nitrogen oxide (NOx), which has caused serious human health and environmental problems. NO capture has become a research focus in gas purification because NO accounts for more than 90% of NOx and is difficult to remove. Advanced oxidation processes (AOPs), features the little secondary pollution and the broad-spectrum strong oxidation of hydroxyl radicals (•OH), are effective and promising strategies for NO removal from coal-fired flue gas. This review provides the state of the art of NO removal by AOPs, highlighting several methods for producing •OH and SO4•-. According to the main radicals responsible for NO removal, these processes are classified into two categories: hydroxyl radical-based AOPs (HR-AOPs) and sulfate radical-based AOPs (SR-AOPs). This paper also reviews the mechanisms of NO capture by reactive oxygen species (ROS) and SO4•- in various AOPs. A HiGee (high-gravity) enhanced AOP process for improving NO removal, characterized by intensified gas-liquid mass transfer and efficient micro-mixing, is then proposed and discussed in brief. We believe that this review will be useful for workers in this field. Graphical abstract.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuicui Wang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Qian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Liu Y, Shan Y, Wang Y. Novel Simultaneous Removal Technology of NO and SO 2 Using a Semi-Dry Microwave Activation Persulfate System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2031-2042. [PMID: 31894977 DOI: 10.1021/acs.est.9b07221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As it has a simple system and a small floor area, flue gas simultaneous desulfurization and denitrification technology has a good development prospect, and related research has become a hot topic in the field of flue gas purification. In this work, a novel simultaneous removal technology of NO and SO2 from flue gas using a semi-dry microwave activation persulfate system was developed for the first time. A series of experiments and characterization analyses had been implemented to research the feasibility of this new flue gas purification technology. The oxidation products, free radicals, and mechanism of NO and SO2 simultaneous removal were revealed. The effect of the main technological parameters on NO and SO2 simultaneous removal was also studied. Relevant results demonstrated that an increase in the microwave radiation power, persulfate concentration, and O2 concentration enhanced NO and SO2 simultaneous removal. The increase of NO and SO2 concentrations weakened NO and SO2 simultaneous removal. The reagent dosage, pH value of the solution, and reaction temperature showed a dual influence on NO and SO2 simultaneous removal. Free-radical capture experiments revealed that both SO4-• and •OH that were produced by microwave activation of persulfate were the major active species and played very key roles in NO and SO2 simultaneous removal. The main products (sulfate and nitrate) and byproducts (NO2) in the tail gas were found. The process application and product post-treatment routes were also proposed. The result may provide the necessary inspiration and guidance for the development and application of microwave-activated advanced oxidation technology in the flue gas treatment area.
Collapse
Affiliation(s)
- Yangxian Liu
- School of Energy and Power Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Ye Shan
- School of Energy and Power Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Yan Wang
- School of Energy and Power Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| |
Collapse
|
8
|
Meng Z, Wang C, Wang X, Li H. Efficient and stable catalyst of α-FeOOH for NO oxidation from coke oven flue gas by the catalytic decomposition of gaseous H2O2. RSC Adv 2020; 10:8207-8211. [PMID: 35497847 PMCID: PMC9050019 DOI: 10.1039/d0ra00533a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
A catalyst α-FeOOH possesses excellent catalytic activity for NO oxidation, and N2O5 is first found in NO oxidation products.
Collapse
Affiliation(s)
- Ziheng Meng
- CAS Key Laboratory of Green Process and Engineering
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Chenye Wang
- CAS Key Laboratory of Green Process and Engineering
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Xingrui Wang
- CAS Key Laboratory of Green Process and Engineering
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
9
|
Zhao H, Dong M, Wang Z, Wang H, Qi H. Roles of free radicals in NO oxidation by Fenton system and the enhancement on NO oxidation and H 2O 2 utilization efficiency. ENVIRONMENTAL TECHNOLOGY 2020; 41:109-116. [PMID: 29924699 DOI: 10.1080/09593330.2018.1491638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Low H2O2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behaviour of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of [Formula: see text] and [Formula: see text] on NO in Fenton system was compared and the useless consumption path of [Formula: see text] and [Formula: see text] that caused the low utilization efficiency of H2O2 were studied. A method to enhance the oxidation ability and H2O2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of [Formula: see text] and [Formula: see text] were active substances that oxidize NO. However, the oxidation ability of [Formula: see text] radicals was stronger. The vast majority of [Formula: see text] and [Formula: see text] was consumed by rapid reaction [Formula: see text] , which was the primary reason for the low utilization efficiency of H2O2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe3+ to Fe2+, thereby increase the generation rate of ·OH and decrease the generation rate of [Formula: see text]. As a result, the oxidation ability and H2O2 utilization efficiency were enhanced.
Collapse
Affiliation(s)
- Haiqian Zhao
- School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing, People's Republic of China
| | - Ming Dong
- School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing, People's Republic of China
| | - Zhonghua Wang
- School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing, People's Republic of China
| | - Huaiyuan Wang
- School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing, People's Republic of China
| | - Hanbing Qi
- School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing, People's Republic of China
| |
Collapse
|
10
|
Wang Y, Han X, Liu Y. Removal of Carbon Monoxide from Simulated Flue Gas Using Two New Fenton Systems: Mechanism and Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10387-10397. [PMID: 31389232 DOI: 10.1021/acs.est.9b02975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two novel removal processes of carbon monoxide using two new Fenton systems (i.e., Cu2+/Fe2+ and Mn2+/Fe2+ coactivated H2O2 systems) were developed. The effect of several process parameters (concentrations of H2O2, Fe2+, Cu2+, and Mn2+, reagent pH value, solution temperature, and simulated flue gas components) on CO removal was studied in a bubbling reactor. The mechanism and kinetics of CO removal were also revealed. Results show that adding Cu2+ or Mn2+ obviously enhances the removal process of CO in new Fenton systems. The measured results of free radical yield demonstrate that the enhancing role is derived from producing more ·OH (they are produced due to the synergistic activation role of Cu2+/Fe2+ or Mn2+/Fe2+ in new Fenton systems. The removal efficiency of CO is raised by increasing concentrations of Fe2+, Cu2+, and Mn2+ and is reduced by raising concentrations of CO, NO, and SO2. Increasing H2O2 concentration, reagent pH, and solution temperature demonstrates a dual impact on CO absorption. Three oxidation pathways are found to be responsible for CO removal in new Fenton systems. Results of mass-transfer reaction kinetics reveal that CO removal processes are located in a fast-speed reaction kinetics region (the CO removal process is controlled by the mass transfer rate).
Collapse
Affiliation(s)
- Yan Wang
- School of Energy and Power Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Xuan Han
- School of Energy and Power Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Yangxian Liu
- School of Energy and Power Engineering , Jiangsu University , Zhenjiang 212013 , China
| |
Collapse
|
11
|
Yang S, Xiong Y, He S. Study on the Macro‐Kinetics of NO Advanced Oxidation Removal by Decomposition of Gas‐Phase H
2
O
2
over γ‐Fe
2
O
3
@Fe
3
O
4. ChemistrySelect 2019. [DOI: 10.1002/slct.201901142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Siyuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of EducationSchool of Energy and EnvironmentSoutheast University Nanjing 210096, Jiangsu ChinaTel.: +86 25 83794744
| | - Yuanquan Xiong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of EducationSchool of Energy and EnvironmentSoutheast University Nanjing 210096, Jiangsu ChinaTel.: +86 25 83794744
| | - Shanshan He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of EducationSchool of Energy and EnvironmentSoutheast University Nanjing 210096, Jiangsu ChinaTel.: +86 25 83794744
| |
Collapse
|
12
|
Yang B, Ma S, Cui R, Wang J, Sun S, Li S. Novel Low-Cost Simultaneous Removal of NO and SO2 with ·OH from Decomposition of H2O2 Catalyzed by Alkali-Magnetic Modified Fly Ash. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bingchuan Yang
- Department of Thermal Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi Key Laboratory of Circulating Fluidized Bed Efficient Cleaning and Utilization, Taiyuan 030024, Shanxi, China
| | - Suxia Ma
- Department of Thermal Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi Key Laboratory of Circulating Fluidized Bed Efficient Cleaning and Utilization, Taiyuan 030024, Shanxi, China
| | - Rongji Cui
- Department of Thermal Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi Key Laboratory of Circulating Fluidized Bed Efficient Cleaning and Utilization, Taiyuan 030024, Shanxi, China
| | - Jie Wang
- Department of Thermal Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi Key Laboratory of Circulating Fluidized Bed Efficient Cleaning and Utilization, Taiyuan 030024, Shanxi, China
| | - Shujun Sun
- Department of Thermal Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi Key Laboratory of Circulating Fluidized Bed Efficient Cleaning and Utilization, Taiyuan 030024, Shanxi, China
| | - Shicheng Li
- Department of Thermal Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi Key Laboratory of Circulating Fluidized Bed Efficient Cleaning and Utilization, Taiyuan 030024, Shanxi, China
| |
Collapse
|