1
|
Ibarra-Cervantes NF, Vázquez-Núñez E, Gómez-Solis C, Fernández-Luqueño F, Basurto-Islas G, Álvarez-Martínez J, Castro-Beltrán R. Green synthesis of ZnO nanoparticles from ball moss (Tillandsia recurvata) extracts: characterization and evaluation of their photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13046-13062. [PMID: 38240974 DOI: 10.1007/s11356-024-31929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.
Collapse
Affiliation(s)
- Nayeli Fabiola Ibarra-Cervantes
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico
| | - Edgar Vázquez-Núñez
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico.
| | | | - Fabian Fernández-Luqueño
- Sustainability of Natural Resources and Energy Program, C.P. 25900, Cinvestav-Saltillo, Coahuila, Mexico
| | | | | | | |
Collapse
|
2
|
Eisapour M, Zhao H, Zhao J, Roostaei T, Li Z, Omidkar A, Hu J, Chen Z. p-n heterojunction of nickel oxide on titanium dioxide nanosheets for hydrogen and value-added chemicals coproduction from glycerol photoreforming. J Colloid Interface Sci 2023; 647:255-263. [PMID: 37253294 DOI: 10.1016/j.jcis.2023.05.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
Selective photocatalysis to simultaneously produce sustainable hydrogen and value-added chemicals from biomass or biomass derivates is attracting extensive investigations. However, the lack of bifunctional photocatalyst greatly limits the possibility to realize the "one stone kills two birds" scenario. Herein, anatase titanium dioxide (TiO2) nanosheets are rationally designed as the n-type semiconductor, combining with nickel oxide (NiO) nanoparticles, the p-type semiconductor, resulting in the formation of a p-n heterojunction structure. The shorten charge transfer path and the spontaneous formation of p-n heterojunction endow the photocatalyst with efficient spatial separation of photogenerated electrons and holes. As a result, TiO2 accumulates electrons for efficient hydrogen generation while NiO collects holes to selectively oxidize glycerol into value-added chemicals. The results showed that by loading 5% nickel into the heterojunction caused a remarkable rise in the generation of hydrogen (H2). The combination of NiO-TiO2 created 4000 µmolh-1g-1 of H2, which is 50% greater than the H2 production from pure nanosheet TiO2 and 63 times more than the H2 production from commercial nanopowder TiO2. Then, by changing loading amount of Ni, it is found that when 7.5 % of Ni is loaded the highest amount of hydrogen production achieved, 8000 µmolh-1g-1. By employing best sample (S3), 20 % of glycerol converted to value added products, glyceraldehyde and dihydroxyacetone. The feasibility study revealed that glyceraldehyde generates the largest portion of yearly earnings at 89%, while dihydroxyacetone and H2 account for 11% and 0.03% of the annual revenue, respectively. This work provides a good example to simultaneously produce green hydrogen and valuable chemicals with the rational design of dually functional photocatalyst.
Collapse
Affiliation(s)
- Mehdi Eisapour
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Tayebeh Roostaei
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zheng Li
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Ali Omidkar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada; Eastern Institute for Advanced Study, Ningbo, Zhengjiang 315200, China.
| |
Collapse
|
3
|
Adhikari S, Mandal S, Kim DH. 1D/2D constructed Bi 2S 3/Bi 2O 2CO 3 direct Z-Scheme heterojunction: A versatile photocatalytic material for boosted photodegradation, photoreduction and photoelectrochemical detection of water-based contaminants. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126263. [PMID: 34111747 DOI: 10.1016/j.jhazmat.2021.126263] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
In this work, two-dimensional Bi2O2CO3 disk is synthesized, followed by the growth of Bi2S3 over Bi2O2CO3 via topotactic transformation by controlling the amount of thiourea under hydrothermal conditions. The synthesized composite catalyst is investigated for photocatalytic oxidation and reduction of tetracycline hydrochloride and hexavalent chromium under visible light irradiation. High interfacial contact between the Bi2O2CO3 disk0 and Bi2S3 fiber is confirmed via high-resolution microscopic imaging. Enhanced light absorption and increased charge carrier separation is observed after the formation of the Bi2S3/Bi2O2CO3 composite. The Bi2S3/Bi2O2CO3 composite grown using 1 mmol of thiourea shows approximately 98% degradation of tetracycline hydrochloride after 120 min and 99% Cr(VI) reduction after 90 min of photochemical reaction under visible light irradiation. The charge separation is due to the formed internal electric field at the interface, which upon light irradiation follows a z-scheme charge transfer hindering the recombination at the Bi2S3 and Bi2O2CO3 interface, thereby contributing efficiently to the photochemical process. In addition, the mechanism of the photochemical reaction for the degradation of pollutants is supported using quencher and probe experiments. Furthermore, photoelectrochemical detection of antibiotic in aqueous solution is conducted to understand the sensing feasibility of the synthesized system.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sandip Mandal
- School of Earth Science and Environmental Engineering, GIST, S6 123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 61005, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|