1
|
Norollahi SE, Yousefzadeh-Chabok S, Yousefi B, Nejatifar F, Rashidy-Pour A, Samadani AA. The effects of the combination therapy of chemotherapy drugs on the fluctuations of genes involved in the TLR signaling pathway in glioblastoma multiforme therapy. Biomed Pharmacother 2024; 177:117137. [PMID: 39018875 DOI: 10.1016/j.biopha.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
One of the most lethal and aggressive types of malignancies with a high mortality rate and poor response to treatment is glioblastoma multiforme (GBM). This means that modernizing the medications used in chemotherapy, in addition to medicines licensed for use in other illnesses and chosen using a rationale process, can be beneficial in treating this illness. Meaningly, drug combination therapy with chemical or herbal originations or implanting a drug wafer in tumors to control angiogenesis is of great importance. Importantly, the primary therapeutic hurdles in GBM are the development of angiogenesis and the blood-brain barrier (BBB), which keeps medications from getting to the tumor. This malignancy can be controlled if the drug's passage through the BBB and the VEGF (vascular endothelial growth factor), which promotes angiogenesis, are inhibited. In this way, the effect of combination therapy on the genes of different main signaling pathways like TLRs may be indicated as an impressive therapeutic strategy for treating GBM. This article aims to discuss the effects of chemotherapeutic drugs on the expression of various genes and associated translational factors involved in the TLR signaling pathway.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Bahman Yousefi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Smerdi D, Moutafi M, Kotsantis I, Stavrinou LC, Psyrri A. Overcoming Resistance to Temozolomide in Glioblastoma: A Scoping Review of Preclinical and Clinical Data. Life (Basel) 2024; 14:673. [PMID: 38929657 PMCID: PMC11204771 DOI: 10.3390/life14060673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GB) is the most common and most aggressive primary brain tumor in adults, with an overall survival almost 14.6 months. Optimal resection followed by combined temozolomide chemotherapy and radiotherapy, also known as Stupp protocol, remains the standard of treatment; nevertheless, resistance to temozolomide, which can be obtained throughout many molecular pathways, is still an unsurpassed obstacle. Several factors influence the efficacy of temozolomide, including the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. The blood-brain barrier, which serves as both a physical and biochemical obstacle, the tumor microenvironment's pro-cancerogenic and immunosuppressive nature, and tumor-specific characteristics such as volume and antigen expression, are the subject of ongoing investigation. In this review, preclinical and clinical data about temozolomide resistance acquisition and possible ways to overcome chemoresistance, or to treat gliomas without restoration of chemosensitinity, are evaluated and presented. The objective is to offer a thorough examination of the clinically significant molecular mechanisms and their intricate interrelationships, with the aim of enhancing understanding to combat resistance to TMZ more effectively.
Collapse
Affiliation(s)
- Dimitra Smerdi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Myrto Moutafi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Lampis C. Stavrinou
- Department of Neurosurgery and Neurotraumatology, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
3
|
Xing YL, Panovska D, Petritsch CK. Successes and challenges in modeling heterogeneous BRAF V600E mutated central nervous system neoplasms. Front Oncol 2023; 13:1223199. [PMID: 37920169 PMCID: PMC10619673 DOI: 10.3389/fonc.2023.1223199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Central nervous system (CNS) neoplasms are difficult to treat due to their sensitive location. Over the past two decades, the availability of patient tumor materials facilitated large scale genomic and epigenomic profiling studies, which have resulted in detailed insights into the molecular underpinnings of CNS tumorigenesis. Based on results from these studies, CNS tumors have high molecular and cellular intra-tumoral and inter-tumoral heterogeneity. CNS cancer models have yet to reflect the broad diversity of CNS tumors and patients and the lack of such faithful cancer models represents a major bottleneck to urgently needed innovations in CNS cancer treatment. Pediatric cancer model development is lagging behind adult tumor model development, which is why we focus this review on CNS tumors mutated for BRAFV600E which are more prevalent in the pediatric patient population. BRAFV600E-mutated CNS tumors exhibit high inter-tumoral heterogeneity, encompassing clinically and histopathological diverse tumor types. Moreover, BRAFV600E is the second most common alteration in pediatric low-grade CNS tumors, and low-grade tumors are notoriously difficult to recapitulate in vitro and in vivo. Although the mutation predominates in low-grade CNS tumors, when combined with other mutations, most commonly CDKN2A deletion, BRAFV600E-mutated CNS tumors are prone to develop high-grade features, and therefore BRAFV600E-mutated CNS are a paradigm for tumor progression. Here, we describe existing in vitro and in vivo models of BRAFV600E-mutated CNS tumors, including patient-derived cell lines, patient-derived xenografts, syngeneic models, and genetically engineered mouse models, along with their advantages and shortcomings. We discuss which research gaps each model might be best suited to answer, and identify those areas in model development that need to be strengthened further. We highlight areas of potential research focus that will lead to the heightened predictive capacity of preclinical studies, allow for appropriate validation, and ultimately improve the success of "bench to bedside" translational research.
Collapse
Affiliation(s)
| | | | - Claudia K. Petritsch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Furuta T, Moritsubo M, Muta H, Shimamoto H, Ohshima K, Sugita Y. Pediatric and elderly polymorphous low-grade neuroepithelial tumor of the young: Typical and unusual case reports and literature review. Neuropathology 2023; 43:319-325. [PMID: 36545913 DOI: 10.1111/neup.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 08/03/2023]
Abstract
Polymorphous low-grade neuroepithelial tumor of the young (PLNTY), one of the pediatric-type diffuse low-grade gliomas, is characterized by a diffuse infiltrating pattern of oligodendroglioma-like tumor cells showing CD34 positivity and harbors mitogen-activated protein kinase (MAPK) alteration, such as vRAF murine sarcoma viral oncogene homolog B1 (BRAF) p.V600E or fibroblast growth factor fusion genetically. It occurs mainly in pediatric and adolescents with seizures due to the dominant location of the temporal lobe. However, there have been a few cases of PLNTY in adult patients, suggesting the wide range of this tumor spectrum. Here, we describe two cases of PLNTY, one in a 14-year-old female and the other in a 66-year-old female. The pediatric tumor showed typical clinical course and histopathology with BRAF p.V600E mutation, whereas the elderly tumor was unusual because of non-epileptic onset clinically and ependymal differentiation histopathologically harboring KIAA1549-BRAF fusion. There might be unusual but possible PLNTY, as in our elderly case. We also compared typical pediatric and unusual elderly tumors by reviewing the literature.
Collapse
Affiliation(s)
- Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Mayuko Moritsubo
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroko Muta
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | | | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Yasuo Sugita
- Department of Neuropathology, St. Mary's Hospital, Fukuoka, Japan
| |
Collapse
|
5
|
Wei J, Zhang C, Ma L, Zhang C. Artificial Intelligence Algorithm-Based Intraoperative Magnetic Resonance Navigation for Glioma Resection. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4147970. [PMID: 35317129 PMCID: PMC8916889 DOI: 10.1155/2022/4147970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
The study aimed to analyze the application value of artificial intelligence algorithm-based intraoperative magnetic resonance imaging (iMRI) in neurosurgical glioma resection. 108 patients with glioma in a hospital were selected and divided into the experimental group (intraoperative magnetic resonance assisted glioma resection) and the control group (conventional surgical experience resection), with 54 patients in each group. After the resection, the tumor resection rate, NIHSS (National Institute of Health Stroke Scale) score, Karnofsky score, and postoperative intracranial infection were calculated in the two groups. The results revealed that the average tumor resection rate in the experimental group was significantly higher than that in the control group (P < 0.05). There was no significant difference in Karnofsky score before and after the operation in the experimental group (P > 0.05). There was no significant difference in NIHSS score between the experimental group and the control group after resection (P > 0.05). The number of patients with postoperative neurological deficits in the experimental group was smaller than that in the control group. In addition, there was no significant difference in infection rates between the two groups after glioma resection (P > 0.05). In summary, intraoperative magnetic resonance navigation on the basis of a segmentation dictionary learning algorithm has great clinical value in neurosurgical glioma resection. It can maximize the removal of tumors and ensure the integrity of neurological function while avoiding an increased risk of postoperative infection, which is of great significance for the treatment of glioma.
Collapse
Affiliation(s)
- Jianqiang Wei
- Neurovascular Interventional Therapy Center, Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi, China
| | - Chunman Zhang
- Department of Neurosurgery, Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi, China
| | - Liujia Ma
- Department of Neurosurgery, Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi, China
| | - Chunrui Zhang
- Department of Neurology, Hanzhong People's Hospital, Hanzhong 723000, Shaanxi, China
| |
Collapse
|