1
|
Niu H, Zhang H, Wang D, Zhao L, Zhang Y, Zhou W, Zhang J, Su X, Sun J, Su B, Qiu J, Shen L. LKB1 prevents ILC2 exhaustion to enhance antitumor immunity. Cell Rep 2024; 43:113579. [PMID: 38670109 DOI: 10.1016/j.celrep.2023.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/23/2023] [Accepted: 11/29/2023] [Indexed: 04/28/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play crucial roles in mediating allergic inflammation. Recent studies also indicate their involvement in regulating tumor immunity. The tumor suppressor liver kinase B1 (LKB1) inactivating mutations are associated with a variety of human cancers; however, the role of LKB1 in ILC2 function and ILC2-mediated tumor immunity remains unknown. Here, we show that ablation of LKB1 in ILC2s results in an exhausted-like phenotype, which promotes the development of lung melanoma metastasis. Mechanistically, LKB1 deficiency leads to a marked increase in the expression of programmed cell death protein-1 (PD-1) in ILC2s through the activation of the nuclear factor of activated T cell pathway. Blockade of PD-1 can restore the effector functions of LKB1-deficient ILC2s, leading to enhanced antitumor immune responses in vivo. Together, our results reveal that LKB1 acts to restrain the exhausted state of ILC2 to maintain immune homeostasis and antitumor immunity.
Collapse
Affiliation(s)
- Hongshen Niu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huasheng Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dongdi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Linfeng Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youqin Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyong Zhou
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jingjing Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohui Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Shen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Hasegawa Y, Okamura T, Nakajima H, Kitagawa N, Majima S, Okada H, Senmaru T, Ushigome E, Nakanishi N, Hamaguchi M, Takano H, Fukui M. Metabolic outcomes and changes in innate immunity induced by diesel exhaust particles airway exposure and high-fat high-sucrose diet. Life Sci 2023; 326:121794. [PMID: 37224953 DOI: 10.1016/j.lfs.2023.121794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
AIMS Epidemiological studies have shown that exposure to diesel exhaust particles (DEP) is associated with metabolic diseases. We used mice with nonalcoholic fatty liver disease (NAFLD) caused by a high-fat, high-sucrose diet (HFHSD), which mimics a Western diet, to investigate the mechanism of NAFLD exacerbation via changes in innate immunity in the lungs by airway exposure to DEP. MAIN METHODS Six-week-old C57BL6/J male mice were fed HFHSD, and DEP was administered endotracheally once a week for eight weeks. The histology, gene expression, innate immunity cells in the lung and liver, and the serum inflammatory cytokine levels, were investigated. KEY FINDINGS Under the HFHSD, DEP increased blood glucose levels, serum lipid levels, and NAFLD activity scores, and also the expression of genes associated with inflammation in the lungs and liver. DEP caused an increase in ILC1s, ILC2s, ILC3s, and M1 macrophages in the lungs and a marked increase in ILC1s, ILC3s, M1 macrophages, and natural killer cells in the liver, while ILC2 levels were not changed. Furthermore, DEP caused high levels of inflammatory cytokines in the serum. SIGNIFICANCE Chronic exposure to DEP in HFHSD-fed mice increased inflammatory cells involved in innate immunity in the lungs and raised local inflammatory cytokine levels. This inflammation spread throughout the body, suggesting the association with the progression of NAFLD via increased inflammatory cells involved in innate immunity and inflammatory cytokine levels in the liver. These findings contribute to a better understanding of the role of innate immunity in air pollution-related systemic diseases, especially metabolic diseases.
Collapse
Affiliation(s)
- Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Hanako Nakajima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Nobuko Kitagawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan.
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto 615-8577, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Onoda A, Okamoto S, Shimizu R, El-Sayed YS, Watanabe S, Ogawa S, Abe R, Kamimura M, Soga K, Tachibana K, Takeda K, Umezawa M. Effect of Carbon Black Nanoparticle on Neonatal Lymphoid Tissues Depending on the Gestational Period of Exposure in Mice. FRONTIERS IN TOXICOLOGY 2022; 3:700392. [PMID: 35295157 PMCID: PMC8915855 DOI: 10.3389/ftox.2021.700392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Particulate air pollution, containing nanoparticles, enhances the risk of pediatric allergic diseases that is potentially associated with disruption of neonatal immune system. Previous studies have revealed that maternal exposure to carbon black nanoparticles (CB-NP) disturbs the development of the lymphoid tissues in newborns. Interestingly, the CB-NP-induced immune profiles were observed to be different depending on the gestational period of exposure. It is important to identify the critical exposure period to prevent toxic effects of nanoparticles on the development of the immune system. Therefore, the present study was aimed to investigate the effect of CB-NP on the development of neonatal lymphoid tissues in mice, depending on the gestational period of exposure. Methods: Pregnant ICR mice were treated with a suspension of CB-NP (95 μg/kg body weight) by intranasal instillation; the suspension was administered twice during each gestational period as follows: the pre-implantation period (gestational days 4 and 5), organogenesis period (gestational days 8 and 9), and fetal developmental period (gestational days 15 and 16). The spleen and thymus were collected from offspring mice at 1, 3, and 5-days post-partum. Splenocyte and thymocyte phenotypes were examined by flow cytometry. Gene expression in the spleen was examined by quantitative reverse transcription-polymerase chain reaction. Results: The numbers of total splenocytes and splenic CD3−B220− phenotype (non-T/non-B lymphocytes) in offspring on postnatal day 5 were significantly increased after exposure to CB-NP during the organogenesis period compared with other gestational periods of exposure and control (no exposure). In contrast, expression levels of mRNA associated with chemotaxis and differentiation of immune cells in the spleen were not affected by CB-NP exposure during any gestational period. Conclusion: The organogenesis period was the most susceptible period to CB-NP exposure with respect to lymphoid tissue development. Moreover, the findings of the present and previous studies suggested that long-term exposure to CB-NP across multiple gestational periods including the organogenesis period, rather than acute exposure only organogenesis period, may more severely affect the development of the immune system.
Collapse
Affiliation(s)
- Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Saki Okamoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryuhei Shimizu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yasser S El-Sayed
- Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Shiho Watanabe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Shuhei Ogawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Advanced Comprehensive Research Center, Teikyo University, Hachioji, Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Ken Tachibana
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| |
Collapse
|
4
|
Role of Interleukin-1 Receptor-Like 1 (ST2) in Cerebrovascular Disease. Neurocrit Care 2021; 35:887-893. [PMID: 34231185 DOI: 10.1007/s12028-021-01284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Following both ischemic and hemorrhagic stroke, innate immune cells initiate a proinflammatory response that further exacerbate tissue injury in the acute phase, but these cells also play an important reparative role thereafter. Numerous cytokines and signaling pathways have been implicated in driving the deleterious proinflammatory response, but less is known about the mediators that connect the initial vascular injury to the systemic immune response and the relationship between proinflammatory and reparative immune responses. The Interleukin-33 (IL-33) and serum stimulation-2 (ST2) axis is an interleukin signaling pathway that is a prime candidate to fulfill this role. In this review, we describe the biology of the IL-33/ST2 system, present evidence that its soluble decoy receptor, soluble ST2 (sST2), plays a key role in secondary neurologic injury after stroke, and discuss this in the context of the known role of IL-33/ST2 in other disease.
Collapse
|
5
|
Migueres N, Debaille C, Walusiak-Skorupa J, Lipińska-Ojrzanowska A, Munoz X, van Kampen V, Suojalehto H, Suuronen K, Seed M, Lee S, Rifflart C, Godet J, de Blay F, Vandenplas O. Occupational Asthma Caused by Quaternary Ammonium Compounds: A Multicenter Cohort Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3387-3395. [PMID: 33940212 DOI: 10.1016/j.jaip.2021.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Quaternary ammonium compounds (QACs) are used extensively for cleaning and disinfection and have been documented in scattered reports as a cause of occupational asthma (OA) through bronchoprovocation tests (BPTs). OBJECTIVE To examine the clinical, functional, and inflammatory profile of QAC-induced OA compared with OA caused by other low-molecular weight (LMW) agents. METHODS The study was conducted in a retrospective multicenter cohort of 871 subjects with OA ascertained by a positive BPT. Subjects with QAC-induced OA (n = 22) were identified based on a positive BPT to QACs after exclusion of those challenged with cleaning products or disinfectants that contained other potential respiratory sensitizers. They were compared with 289 subjects with OA caused by other LMW agents. RESULTS Most subjects with QAC-induced OA were working in the health care sector (n = 14). A twofold or greater increase in the postchallenge level of nonspecific bronchial hyperresponsiveness was recorded in eight of 11 subjects with QAC-induced OA (72.7%) and in 49.7% of those with OA caused by other LMW agents. Although sputum assessment was available in only eight subjects with QAC-induced OA, they showed a significantly greater median (interquartile) increase in sputum eosinophils (18.1% [range, 12.1% to 21.1%]) compared with those with OA caused by other LMW agents (2.0% [range, 0% to 5.2%]; P < .001). CONCLUSIONS This study indicates that QAC-induced OA is associated with a highly eosinophilic pattern of airway response and provides further evidence supporting the sensitizing potential of QACs. The findings highlight the heterogeneous nature of the pathobiologic pathways involved in OA caused by LMW agents.
Collapse
Affiliation(s)
- Nicolas Migueres
- Groupe Méthode Recherche Clinique, Pôle de Santé Publique, Strasbourg University, Strasbourg, France; Division of Asthma and Allergy, Department of Chest Diseases, University Hospital of Strasbourg and Fédération de Médecine Translationnelle, Strasbourg University, Strasbourg, France
| | - Charlotte Debaille
- Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | | | - Xavier Munoz
- Servei Pneumologia, Hospital Vall d'Hebron, Universitat Autonoma de Barcelona and CIBER de Enfermedades Respiratorias, Barcelona, Spain
| | - Vera van Kampen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr University, Bochum, Germany
| | - Hille Suojalehto
- Occupational Health, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Katri Suuronen
- Occupational Health, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Martin Seed
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, United Kingdom
| | - Sewon Lee
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine Rifflart
- Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium
| | - Julien Godet
- Groupe Méthode Recherche Clinique, Pôle de Santé Publique, Strasbourg University, Strasbourg, France
| | - Frédéric de Blay
- Division of Asthma and Allergy, Department of Chest Diseases, University Hospital of Strasbourg and Fédération de Médecine Translationnelle, Strasbourg University, Strasbourg, France
| | - Olivier Vandenplas
- Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium.
| |
Collapse
|
6
|
Innate lymphoid cells in asthma: pathophysiological insights from murine models to human asthma phenotypes. Curr Opin Allergy Clin Immunol 2019; 19:53-60. [PMID: 30516548 DOI: 10.1097/aci.0000000000000497] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The current review describes the role of different types of innate lymphoid cells (ILCs) in the pathogenesis of asthma inflammatory phenotypes by linking findings from murine asthma models with human studies. Novel treatment options are needed for patients with steroid-insensitive asthma. Strategies targeting ILCs, or their upstream or downstream molecules are emerging and discussed in this review. RECENT FINDINGS In eosinophilic asthma, ILCs, and especially type 2 ILCs (ILC2s), are activated by alarmins such as IL-33 upon allergen triggering of the airway epithelium. This initiates IL-5 and IL-13 production by ILC2, resulting in eosinophilic inflammation and airway hyperreactivity. Type 3 ILCs (ILC3s) have been shown to be implicated in obesity-induced asthma, via IL-1β production by macrophages, leading ILC3 and release of IL-17. ILC1s might play a role in severe asthma, but its role is currently less investigated. SUMMARY Several studies have revealed that ILC2s play a role in the induction of eosinophilic inflammation in allergic and nonallergic asthmatic patients mainly via IL-5, IL-13, IL-33 and thymic stromal lymphopoietin. Knowledge on the role of ILC3s and ILC1s in asthmatic patients is lagging behind. Further studies are needed to support the hypothesis that these other types of ILCs contribute to asthma pathogenesis, presumably in nonallergic asthma phenotypes.
Collapse
|
7
|
Benavente FM, Soto JA, Pizarro-Ortega MS, Bohmwald K, González PA, Bueno SM, Kalergis AM. Contribution of IDO to human respiratory syncytial virus infection. J Leukoc Biol 2019; 106:933-942. [PMID: 31091352 PMCID: PMC7166882 DOI: 10.1002/jlb.4ru0219-051rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022] Open
Abstract
IDO is an enzyme that participates in the degradation of tryptophan (Trp), which is an essential amino acid necessary for vital cellular processes. The degradation of Trp and the metabolites generated by the enzymatic activity of IDO can have immunomodulating effects, notably over T cells, which are particularly sensitive to the absence of Trp and leads to the inhibition of T cell activation, cell death, and the suppression of T cell effector functions. Noteworthy, T cells participate in the cellular immune response against the human respiratory syncytial virus (hRSV) and are essential for viral clearance, as well as the total recovery of the host. Furthermore, inadequate or non‐optimal polarization of T cells is often seen during the acute phase of the disease caused by this pathogen. Here, we discuss the capacity of hRSV to exploit the immunosuppressive features of IDO to reduce T cell function, thus acquiring relevant aspects during the biology of the virus. Additionally, we review studies on the influence of IDO over T cell activation and its relationship with hRSV infection.
Collapse
Affiliation(s)
- Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Wu J, Yan X, Jin G. Ulinastatin protects rats from sepsis-induced acute lung injury by suppressing the JAK-STAT3 pathway. J Cell Biochem 2019; 120:2554-2559. [PMID: 30242880 DOI: 10.1002/jcb.27550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
Sepsis is usually accompanied by pulmonary inflammations, leading to acute lung injury. During this process, endogenous factors that play a regulatory role could be exploited to therapeutically alleviate such lethal tissue injury. Here, we showed that ulinastatin (UTI) administration could reduce lung tissue necrosis and swelling during sepsis in rats. UTI treatment also decreased the levels of inflammatory mediators both in the lung and in the serum. Mechanistically, we showed that the phosphorylation levels of JAK2 and STAT3 in the lung of UTI-treated rats were lower than control rats and were correlated with the decreased levels of inflammatory mediators. Taken together, these results demonstrate the protective role of UTI in sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Yan
- Department of Health, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Laboratory Center of General Hospital, Ningxia Medical University, Yinchuan, China
| | - Guoqiang Jin
- Department of Health, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Kobayashi T, Tsutsui H, Shimabukuro-Demoto S, Yoshida-Sugitani R, Karyu H, Furuyama-Tanaka K, Ohshima D, Kato N, Okamura T, Toyama-Sorimachi N. Lysosome biogenesis regulated by the amino-acid transporter SLC15A4 is critical for functional integrity of mast cells. Int Immunol 2019; 29:551-566. [PMID: 29155995 PMCID: PMC5890901 DOI: 10.1093/intimm/dxx063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Mast cells possess specialized lysosomes, so-called secretory granules, which play a key role not only in allergic responses but also in various immune disorders. The molecular mechanisms that control secretory-granule formation are not fully understood. Solute carrier family member 15A4 (SLC15A4) is a lysosome-resident amino-acid/oligopeptide transporter that is preferentially expressed in hematopoietic lineage cells. Here, we demonstrated that SLC15A4 is required for mast-cell secretory-granule homeostasis, and limits mast-cell functions and inflammatory responses by controlling the mTORC1-TFEB signaling axis. In mouse Slc15a4-/- mast cells, diminished mTORC1 activity increased the expression and nuclear translocation of TFEB, a transcription factor, which caused secretory granules to degranulate more potently. This alteration of TFEB function in mast cells strongly affected the FcεRI-mediated responses and IL-33-triggered inflammatory responses both in vitro and in vivo. Our results reveal a close relationship between SLC15A4 and secretory-granule biogenesis that is critical for the functional integrity of mast cells.
Collapse
Affiliation(s)
- Toshihiko Kobayashi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Hidemitsu Tsutsui
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Reiko Yoshida-Sugitani
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Hitomi Karyu
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kaori Furuyama-Tanaka
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Okamura
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Feng S, Zhang L, Bian XH, Luo Y, Qin GH, Shi RM. Role of the TSLP-DC-OX40L pathway in asthma pathogenesis and airway inflammation in mice. Biochem Cell Biol 2017; 96:306-316. [PMID: 29024606 DOI: 10.1139/bcb-2017-0126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aimed to explore the effect of the TSLP-DC-OX40L pathway in asthma pathogenesis and airway inflammation in mice. For this, 65 male BALF/c mice were distributed among the control, asthma, immunoglobulin G (IgG) + asthma (IgG, 500 μg/500 μL, intratracheal injection of 50 μL each time), LY294002 (OX40L inhibitor) + asthma (intratracheal injection of 2 mg/kg LY294002), and anti-TSLP + asthma (intratracheal injection of 500 μg/500 μL TSLP antibody, 50 μL each time) groups. ELISA was applied to measure the serum levels of immunoglobulin E (IgE), ovalbumin (OVA)-sIgE, interleukin-4 (IL-4), IL-5, IL-13, and interferon-γ (IFN-γ); flow cytometry was employed to detect Treg cells and dendritic cell (DC) and lymphopoiesis. RT-qPCR and Western blot assays were used to measure the levels of TSLP, OX40L, T-bet, GATA-3, NF-κB, p38, and ERK. Treatment with LY294002 and anti-TSLP resulted in increases in the numbers of total cells, eosinophils, neutrophils, and lymphocytes in the bronchoalveolar lavage fluid; total serum levels of IgE, OVA-sIgE, IL-4, IL-5, and IL-13; levels of DC cells; lymphopoiesis; and levels of TSLP, OX40L, GATA-3, NF-κB, p38, and ERK, whereas there were decreases in the levels of IFN-γ and CD4+CD25+Treg cells; CD4+Foxp3+Treg cells; and T-bet. The TSLP-DC-OX40L pathway may contribute to asthma pathogenesis and airway inflammation by modulating the levels of CD4+CD25+Treg cells and inflammatory cytokines.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.,Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Li Zhang
- Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.,Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xu-Hua Bian
- Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.,Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Ying Luo
- Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.,Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Guang-Hui Qin
- Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.,Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Rui-Ming Shi
- Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.,Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
11
|
New Insights Contributing to the Development of Effective Vaccines and Therapies to Reduce the Pathology Caused by hRSV. Int J Mol Sci 2017; 18:ijms18081753. [PMID: 28800119 PMCID: PMC5578143 DOI: 10.3390/ijms18081753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Human Respiratory Syncytial Virus (hRSV) is one of the major causes of acute lower respiratory tract infections (ALRTI) worldwide, leading to significant levels of immunocompromisation as well as morbidity and mortality in infants. Its main target of infection is the ciliated epithelium of the lungs and the host immune responses elicited is ineffective at achieving viral clearance. It is thought that the lack of effective immunity against hRSV is due in part to the activity of several viral proteins that modulate the host immune response, enhancing a Th2-like pro-inflammatory state, with the secretion of cytokines that promote the infiltration of immune cells to the lungs, with consequent damage. Furthermore, the adaptive immunity triggered by hRSV infection is characterized by weak cytotoxic T cell responses and secretion of low affinity antibodies by B cells. These features of hRSV infection have meant that, to date, no effective and safe vaccines have been licensed. In this article, we will review in detail the information regarding hRSV characteristics, pathology, and host immune response, along with several prophylactic treatments and vaccine prototypes. We will also expose significant data regarding the newly developed BCG-based vaccine that promotes protective cellular and humoral response against hRSV infection, which is currently undergoing clinical evaluation.
Collapse
|
12
|
Ikutani M, Tsuneyama K, Kawaguchi M, Fukuoka J, Kudo F, Nakae S, Arita M, Nagai Y, Takaki S, Takatsu K. Prolonged activation of IL-5-producing ILC2 causes pulmonary arterial hypertrophy. JCI Insight 2017; 2:e90721. [PMID: 28405615 DOI: 10.1172/jci.insight.90721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IL-33 is one of the critical cytokines that activates group 2 innate lymphoid cells (ILC2s) and mediates allergic reactions. Accumulating evidence suggests that IL-33 is also involved in the pathogenesis of several chronic inflammatory diseases. Previously, we generated an IL-5 reporter mouse and revealed that lung IL-5-producing ILC2s played essential roles in regulating eosinophil biology. In this study, we evaluated the consequences of IL-33 administration over a long period, and we observed significant expansion of ILC2s and eosinophils surrounding pulmonary arteries. Unexpectedly, pulmonary arteries showed severe occlusive hypertrophy that was ameliorated in IL-5- or eosinophil-deficient mice, but not in Rag2-deficient mice. This indicates that IL-5-producing ILC2s and eosinophils play pivotal roles in pulmonary arterial hypertrophy. Administration of a clinically used vasodilator was effective in reducing IL-33-induced hypertrophy and repressed the expansion of ILC2s and eosinophils. Taken together, these observations demonstrate a previously unrecognized mechanism in the development of pulmonary arterial hypertrophy and the causative roles of ILC2 in the process.
Collapse
Affiliation(s)
- Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Department of Immune Regulation, The Research Centre for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Molecular and Environmental Pathology, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Makoto Kawaguchi
- Department of Diagnostic Pathology, Niigata Rosai Hospital, Japan Organization of Occupational Health and Safety, Niigata, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fujimi Kudo
- Department of Immune Regulation, The Research Centre for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,JST, PRESTO, Saitama, Japan
| | - Makoto Arita
- JST, PRESTO, Saitama, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,JST, PRESTO, Saitama, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Centre for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan
| |
Collapse
|
13
|
Amin K, Janson C, Bystrom J. Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes. Scand J Immunol 2017; 84:75-85. [PMID: 27167590 DOI: 10.1111/sji.12448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
Eosinophil granulocytes are intriguing members of the innate immunity system that have been considered important defenders during parasitic diseases as well as culprits during allergy-associated inflammatory diseases. Novel studies have, however, found new homoeostasis-maintaining roles for the cell. Recent clinical trials blocking different Th2 cytokines have uncovered that asthma is heterogeneous entity and forms different characteristic endotypes. Although eosinophils are present in allergic asthma with early onset, the cells may not be essential for the pathology. The cells are, however, likely disease causing in asthma with a late onset, which is often associated with chronic rhinosinusitis. Assessment of eosinophilia, fraction exhaled nitric oxide (FeNO) and periostin are markers that have emerged useful in assessing and monitoring asthma severity and endotype. Current scientific knowledge suggests that eosinophils are recruited by the inflammatory environment, activated by the innate interleukin (IL)-33 and prevented from apoptosis by both lymphocytes and innate immune cells such as type two innate immune cells. Eosinophils contain four specific granule proteins that exhibit an array of toxic and immune-modulatory activates. The granule proteins can be released by different mechanisms. Additionally, eosinophils contain a number of inflammatory cytokines and lipid mediators as well as radical oxygen species that might contribute to the disease both by the recruitment of other cells and the direct damage to supporting cells, leading to exacerbations and tissue fibrosis. This review aimed to outline current knowledge how eosinophils are recruited, activated and mediate damage to tissues and therapies used to control the cells.
Collapse
Affiliation(s)
- K Amin
- Department of Medical Science, Respiratory Medicine and Allergology, Clinical Chemistry and Asthma Research Centre, Uppsala University and University Hospital, Uppsala, Sweden.,Department of Microbiology/Immunology, Faculty of Medical Sciences, School of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - C Janson
- Department of Medical Science, Respiratory Medicine and Allergology, Clinical Chemistry and Asthma Research Centre, Uppsala University and University Hospital, Uppsala, Sweden
| | - J Bystrom
- Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts & the London, Queen Mary, University of London, London, UK
| |
Collapse
|
14
|
Simons B, Ferrini ME, Carvalho S, Bassett DJP, Jaffar Z, Roberts K. PGI2 Controls Pulmonary NK Cells That Prevent Airway Sensitization to House Dust Mite Allergen. THE JOURNAL OF IMMUNOLOGY 2016; 198:461-471. [PMID: 27895167 DOI: 10.4049/jimmunol.1600275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
In allergic asthma, inhalation of airborne allergens such as the house dust mite (HDM) effectively activates both innate and adaptive immunity in the lung mucosa. To determine the role of the eicosanoid PGI2 and its receptor IP during allergic airway sensitization, HDM responses in mice lacking a functional IP receptor (i.e., PGI2 IP receptor-deficient [IP-/-]) were compared with wild type (WT) mice. Surprisingly, IP-/- mice had increased numbers of pulmonary CD3-NK1.1+Ly49b+ NK cells producing IFN-γ that was inversely associated with the number of type 2 innate lymphoid cells (ILC2s) expressing IL-33Rα and IL-13 compared with WT animals. This phenomenon was associated with elevated CX3CL1 levels in the airways of IP-/- mice and treatment with a neutralizing Ab to CX3CL1 reduced IFN-γ production by the lung NK cells. Remarkably, IP-/- mice were less responsive to HDM challenge than WT counterparts because intranasal instillation of the allergen induced markedly reduced levels of airway eosinophils, CD4+ lymphocyte infiltration, and mucus production, as well as depressed levels of CCL2 chemokine and Th2 cytokines. NK cells were responsible for such attenuated responses because depletion of NK1.1+ cells in IP-/- mice restored both the HDM-induced lung inflammation and ILC2 numbers, whereas transfer of CD3-NK1.1+ NK cells into the airways of WT hosts suppressed the inflammatory response. Collectively, these data demonstrate a hitherto unknown role for PGI2 in regulating the number and properties of NK cells resident in lung tissue and reveal a role for NK cells in limiting lung tissue ILC2s and preventing allergic inflammatory responses to inhaled HDM allergen.
Collapse
Affiliation(s)
- Bryan Simons
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Maria E Ferrini
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Sophia Carvalho
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - David J P Bassett
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Zeina Jaffar
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Kevan Roberts
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| |
Collapse
|
15
|
Rosenblum Lichtenstein JH, Molina RM, Donaghey TC, Hsu YHH, Mathews JA, Kasahara DI, Park JA, Bordini A, Godleski JJ, Gillis BS, Brain JD. Repeated Mouse Lung Exposures to Stachybotrys chartarum Shift Immune Response from Type 1 to Type 2. Am J Respir Cell Mol Biol 2016; 55:521-531. [PMID: 27148627 DOI: 10.1165/rcmb.2015-0291oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After a single or multiple intratracheal instillations of Stachybotrys chartarum (S. chartarum or black mold) spores in BALB/c mice, we characterized cytokine production, metabolites, and inflammatory patterns by analyzing mouse bronchoalveolar lavage (BAL), lung tissue, and plasma. We found marked differences in BAL cell counts, especially large increases in lymphocytes and eosinophils in multiple-dosed mice. Formation of eosinophil-rich granulomas and airway goblet cell metaplasia were prevalent in the lungs of multiple-dosed mice but not in single- or saline-dosed groups. We detected changes in the cytokine expression profiles in both the BAL and plasma. Multiple pulmonary exposures to S. chartarum induced significant metabolic changes in the lungs but not in the plasma. These changes suggest a shift from type 1 inflammation after an acute exposure to type 2 inflammation after multiple exposures to S. chartarum. Eotaxin, vascular endothelial growth factor (VEGF), MIP-1α, MIP-1β, TNF-α, and the IL-8 analogs macrophage inflammatory protein-2 (MIP-2) and keratinocyte chemoattractant (KC), had more dramatic changes in multiple- than in single-dosed mice, and parallel the cytokines that characterize humans with histories of mold exposures versus unexposed control subjects. This repeated exposure model allows us to more realistically characterize responses to mold, such as cytokine, metabolic, and cellular changes.
Collapse
Affiliation(s)
- Jamie H Rosenblum Lichtenstein
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ramon M Molina
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas C Donaghey
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yi-Hsiang H Hsu
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,2 Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts; and
| | - Joel A Mathews
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - David I Kasahara
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jin-Ah Park
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - André Bordini
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - John J Godleski
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Bruce S Gillis
- 3 Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Joseph D Brain
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
16
|
Anderson HM, Lemanske RF, Arron JR, Holweg CTJ, Rajamanickam V, Gangnon RE, Gern JE, Jackson DJ. Relationships among aeroallergen sensitization, peripheral blood eosinophils, and periostin in pediatric asthma development. J Allergy Clin Immunol 2016; 139:790-796. [PMID: 27484037 DOI: 10.1016/j.jaci.2016.05.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/30/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Biomarkers, preferably noninvasive, that predict asthma inception in children are lacking. OBJECTIVE Little is known about biomarkers of type 2 inflammation in early life in relation to asthma inception. We evaluated aeroallergen sensitization, peripheral blood eosinophils, and serum periostin as potential biomarkers of asthma in children. METHODS Children enrolled in the Childhood Origins of ASThma study were followed prospectively from birth. Blood samples were collected at ages 2, 4, 6, and 11 years, and serum-specific IgE levels, blood eosionophil counts, and periostin levels were measured in 244 children. Relationships among these biomarkers, age, and asthma were assessed. RESULTS Serum periostin levels were approximately 2- to 3-fold higher in children than previously observed adult levels. Levels were highest at 2 years (145 ng/mL), and did not change significantly between 4 and 11 years (128 and 130 ng/mL). Age 2 year periostin level of 150 ng/mL or more predicted asthma at age 6 years (odds ratio [OR], 2.3; 95% CI, 1.3-4.4). Eosinophil count of 300 cells/μL or more and aeroallergen sensitization at age 2 years were each associated with increased risk of asthma at age 6 years (OR, 3.1; 95% CI, 1.7-6.0 and OR, 3.3; 95% CI, 1.7-6.3). Children with any 2 of the biomarkers had a significantly increased risk of developing asthma by school age (≥2 biomarkers vs none: OR, 6.6; 95% CI, 2.7-16.0). CONCLUSIONS Serum periostin levels are significantly higher in children than in adults, likely due to bone turnover, which impairs clinical utility in children. Early life aeroallergen sensitization and elevated blood eosinophils are robust predictors of asthma development. Children with evidence of activation of multiple pathways of type 2 inflammation in early life are at greatest risk for asthma development.
Collapse
Affiliation(s)
- Halie M Anderson
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wis.
| | - Robert F Lemanske
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wis
| | | | | | - Victoria Rajamanickam
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, Madison, Wis
| | - Ronald E Gangnon
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, Madison, Wis
| | - James E Gern
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wis
| | - Daniel J Jackson
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wis
| |
Collapse
|
17
|
De Grove KC, Provoost S, Hendriks RW, McKenzie ANJ, Seys LJM, Kumar S, Maes T, Brusselle GG, Joos GF. Dysregulation of type 2 innate lymphoid cells and T H2 cells impairs pollutant-induced allergic airway responses. J Allergy Clin Immunol 2016; 139:246-257.e4. [PMID: 27315767 PMCID: PMC5420012 DOI: 10.1016/j.jaci.2016.03.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although the prominent role of TH2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. OBJECTIVE We sought to investigate the relative contribution of ILC2 and adaptive TH2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. METHODS Wild-type, Gata-3+/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα)fl/flIL7RCre (ILC2-deficient), and recombination-activating gene (Rag) 2-/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and TH2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. RESULTS Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and TH2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and TH2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2-/- mice. CONCLUSION These data indicate that dysregulation of ILC2s and TH2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure.
Collapse
Affiliation(s)
- Katrien C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Sharen Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium.
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Leen J M Seys
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Smitha Kumar
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Guy G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Guy F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
18
|
Abstract
Recent discoveries have led to the identification of a novel group of immune cells, the innate lymphoid cells (ILCs). The members of this group are divided into three subpopulations: ILC1s, ILC2s, and ILC3s. ILC2s produce Th2 cytokines, IL-4, IL-5, and IL-13, upon activation by epithelial cell-derived cytokines, lipid mediators (cysteinyl leukotrienes and prostaglandin D2), and TNF family member TL1A and promote structural and immune cell responses in the airways after antigen exposure. In addition, ILC2 function is also influenced by inducible T cell costimulator (ICOS)/ICOS-ligand (ICOS-L) interactions via direct contact between immune cells. The most common airway antigens are allergens and viruses which are highly linked to the induction of airway diseases with underlying type 2 inflammation including asthma and allergic rhinitis. Based on recent findings linking ILC2s and airway Th2 responses, there is intensive investigation into the role of ILC2s in human disease with the hope of a better understanding of the pathophysiology and the discovery of novel potential therapeutic targets. This review summarizes the recent advances made in elucidating ILC2 involvement in human Th2 airway disease.
Collapse
|
19
|
Affiliation(s)
- S. Scheurer
- Molecular Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - M. Toda
- Molecular Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Vieths
- Molecular Allergology; Paul-Ehrlich-Institut; Langen Germany
| |
Collapse
|
20
|
Interleukin 13-positive mast cells are increased in immunoglobulin G4-related sialadenitis. Sci Rep 2015; 5:7696. [PMID: 25571893 PMCID: PMC4287729 DOI: 10.1038/srep07696] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-13 is a T helper 2 (Th2) cytokine that plays important roles in the pathogenesis of asthma. IL-13 induces hypersensitivity of the airways, increased mucous production, elevated serum immunoglobulin (Ig) E levels, and increased numbers of eosinophils. Many patients with IgG4-related disease have allergic backgrounds and show elevated serum IgE levels and an increase in the number of eosinophils. Upregulation of Th2/regulatory T (Treg) cytokines, including IL-13, has been detected in affected tissues of patients with IgG4-related disease. We previously reported that mast cells might be responsible for the production of the Th2/Treg cytokines IL-4, IL-10, and transforming growth factor (TGF)-β1 in IgG4-related disease. In this study, immunohistochemical analysis showed increased numbers of IL-13-positive mast cells in IgG4-related disease, which suggests that mast cells also produce IL-13 and contribute to elevation of serum IgE levels and eosinophil infiltration in IgG4-related disease.
Collapse
|
21
|
Effector Cells of the Mucosal Immune System. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Ikutani M, Tsuneyama K, Nakae S, Takatsu K. Emerging roles of IL-33 in inflammation and immune regulation. Inflamm Regen 2015. [DOI: 10.2492/inflammregen.35.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| |
Collapse
|
23
|
Sherkat R, Yazdani R, Ganjalikhani Hakemi M, Homayouni V, Farahani R, Hosseini M, Rezaei A. Innate lymphoid cells and cytokines of the novel subtypes of helper T cells in asthma. Asia Pac Allergy 2014; 4:212-21. [PMID: 25379481 PMCID: PMC4215431 DOI: 10.5415/apallergy.2014.4.4.212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In this study, the expression of interleukin-9 (IL-9), IL-17, IL-22, and IL-25 genes that might be the potential predisposing factors for asthma as well as count of innate lymphoid cells (ILCs) as another source of inflammatory cytokines have been evaluated. OBJECTIVE The aim of this study was to evaluate the expression of newly identified helper T cells signature cytokines and amount of ILCs. METHODS Blood and sputum samples from 23 patients with moderate to severe asthma and 23 healthy volunteers were collected. The types of allergens to which our patients were sensitive were defined using immunoblotting method. Gene expression of studied cytokines was evaluated using quantitative transcription-polymerase chain reaction and ILCs were counted by the flow cytometry method. RESULTS In this research, the gene expressions of IL-9, IL-17, IL-22, and IL-25 were significantly higher in asthmatics, especially in the severe form of the disease. This increase was even higher in serum samples compared with sputum samples. Counting ILCs revealed their increase in comparison with normal people. CONCLUSION We showed the importance of IL-25, IL-22, IL-17, and IL-9 cytokines in patients with asthma as their expression levels are increased and these increase are correlated with the severity of the disease. We also showed that the increased amount of ILCs in asthmatics could confirm their potential role in the immunopathogenesis of asthma as another source of inflammatory cytokines.
Collapse
Affiliation(s)
- Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Reza Yazdani
- Immunology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Vida Homayouni
- Immunology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rahim Farahani
- Immunology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Hosseini
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abbas Rezaei
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
24
|
Hendriks RW. Help for the helpers: cooperation between group 2 innate lymphoid cells and T helper 2 cells in allergic asthma. Allergy 2014; 69:1261-4. [PMID: 24976555 DOI: 10.1111/all.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R. W. Hendriks
- Department of Pulmonary Medicine; Erasmus MC Rotterdam; Rotterdam the Netherlands
| |
Collapse
|
25
|
Lund S, Walford HH, Doherty TA. Type 2 Innate Lymphoid Cells in Allergic Disease. ACTA ACUST UNITED AC 2014; 9:214-221. [PMID: 24876829 PMCID: PMC4033554 DOI: 10.2174/1573395510666140304235916] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/02/2023]
Abstract
Type II innate lymphoid cells (ILC2) are a novel population of lineage-negative cells that produce high levels
of Th2 cytokines IL-5 and IL-13. ILC2 are found in human respiratory and gastrointestinal tissue as well as in skin.
Studies from mouse models of asthma and atopic dermatitis suggest a role for ILC2 in promoting allergic inflammation.
The epithelial cytokines IL-25, IL-33, and TSLP, as well as the lipid mediator leukotriene D4, have been shown to
potently activate ILC2 under specific conditions and supporting the notion that many separate pathways in allergic disease
may result in stimulation of ILC2. Ongoing investigations are required to better characterize the relative contribution of
ILC2 in allergic inflammation as well as mechanisms by which other cell types including conventional T cells regulate
ILC2 survival, proliferation, and cytokine production. Importantly, therapeutic strategies to target ILC2 may reduce
allergic inflammation in afflicted individuals. This review summarizes the development, surface marker profile, cytokine
production, and upstream regulation of ILC2, and focuses on the role of ILC2 in common allergic diseases.
Collapse
Affiliation(s)
- Sean Lund
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Hannah H Walford
- Rady's Children's Hospital of San Diego, Division of Rheumatology, Allergy and Immunology, San Diego, CA, USA
| | - Taylor A Doherty
- Department of Medicine, University of California, La Jolla, CA, USA
| |
Collapse
|
26
|
Li BWS, Hendriks RW. Group 2 innate lymphoid cells in lung inflammation. Immunology 2013; 140:281-7. [PMID: 23866009 DOI: 10.1111/imm.12153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022] Open
Abstract
Although allergic asthma is a heterogeneous disease, allergen-specific T helper 2 (Th2) cells producing the key cytokines involved in type 2 inflammation, interleukin-4 (IL-4), IL-5 and IL-13, are thought to play a major role in asthma pathogenesis. This model is challenged by the recent discovery of group 2 innate lymphoid cells (ILC2) that represent a critical innate source of type 2 cytokines. These ILC2 are activated by epithelial cell-derived cytokines, including IL-25 and IL-33, which have been implicated in the initiation of asthma. In this review, we will discuss recent studies supporting a significant role for ILC2 in lung inflammation, with special attention to allergen-induced asthma.
Collapse
Affiliation(s)
- Bobby W S Li
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | | |
Collapse
|
27
|
Rao YK, Chen YC, Fang SH, Lai CH, Geethangili M, Lee CC, Tzeng YM. Ovatodiolide inhibits the maturation of allergen-induced bone marrow-derived dendritic cells and induction of Th2 cell differentiation. Int Immunopharmacol 2013; 17:617-24. [DOI: 10.1016/j.intimp.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 01/10/2023]
|
28
|
Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H, Amsen D. Modulation of Signal Strength Switches Notch from an Inducer of T Cells to an Inducer of ILC2. Front Immunol 2013; 4:334. [PMID: 24155745 PMCID: PMC3804867 DOI: 10.3389/fimmu.2013.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are emerging key players of the immune system with close lineage relationship to T cells. ILC2 play an important role in protective immunity against multicellular parasites, but are also involved in the pathogenesis of type 2 immune diseases. Here, we have studied the developmental requirements for human ILC2. We report that ILC2 are present in the thymus of young human donors, possibly reflecting local differentiation. Furthermore, we show that uncommitted lineage−CD34+CD1a−human thymic progenitors have the capacity to develop into ILC2 in vitro under the influence of Notch signaling, either by stimulation with the Notch ligand Delta like 1 (Dll1) or by expression of the active intracellular domain of NOTCH1 (NICD1). The capacity of NICD1 to mobilize the ILC2 differentiation program was sufficiently potent to override commitment to the T cell lineage in CD34+CD1a+ progenitors and force them into the ILC2 lineage. As Notch is an important factor also for T cell development, these results raise the question how one and the same signaling pathway can elicit such distinct developmental outcomes from the same precursors. We provide evidence that Notch signal strength is a critical determinant in this decision: by tuning signal amplitude, Notch can be converted from a T cell inducer (low signal strength) to an ILC2 inducer (high signal strength). Thus, this study enhances our understanding of human ILC2 development and identifies a mechanism determining specificity of Notch signal output during T cell and ILC2 differentiation.
Collapse
Affiliation(s)
- Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center , Amsterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|