1
|
Liu H, Zhou L, Yi P, Zhan F, Zhou L, Dong Y, Xiong Y, Hua F, Xu G. ω3-PUFA alleviates neuroinflammation by upregulating miR-107 targeting PIEZO1/NFκB p65. Int Immunopharmacol 2024; 132:111996. [PMID: 38579563 DOI: 10.1016/j.intimp.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND MiR-107 is reduced in sepsis and associated with inflammation regulation. Dietary supplementation with polyunsaturated fatty acids (ω3-PUFA) can increase the expression of miR-107; this study investigated whether the ω3-PUFA can effectively inhibit neuroinflammation and improve cognitive function by regulating miR-107 in the brain. METHODS The LPS-induced mouse model of neuroinflammation and the BV2 cell inflammatory model were used to evaluate the effects of ω3-PUFA on miR-107 expression and inflammation. Intraventricular injection of Agomir and Antagomir was used to modulate miR-107 expression. HE and Nissl staining for analyzing hippocampal neuronal damage, immunofluorescence analysis for glial activation, RT-qPCR, and Western blot were conducted to examine miR-107 expression and inflammation signalling. RESULTS The result shows that LPS successfully induced the mouse neuroinflammation model and BV2 cell inflammation model. Supplementation of ω3-PUFA effectively reduced the secretion of pro-inflammatory factors TNFα, IL1β, and IL6 induced by LPS, improved cognitive function impairment, and increased miR-107 expression in the brain. Overexpression of miR-107 in the brain inhibited the nuclear factor κB (NFκB) pro-inflammatory signalling pathway by targeting PIEZO1, thus suppressing microglial and astrocyte activation and reducing the release of inflammatory mediators, which alleviated neuroinflammatory damage and improved cognitive function in mice. miR-107, as an intron of PANK1, PANK1 is subject to PPAR α Adjust. ω3-PUFA can activate PPARα, but ω3-PUFA upregulates brain miR-107, and PPARα/PANK1-related pathways may not be synchronized, and further research is needed to confirm the specific mechanism by which ω3-PUFA upregulates miR-107. CONCLUSION The miR-107/PIEZO1/NFκB p65 pathway represents a novel mechanism underlying the improvement of neuroinflammation by ω3-PUFA.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lian Zhou
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New Area Hospital of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Dai M, Peng W, Zhang T, Zhao Q, Ma X, Cheng Y, Wang C, Li F. Metabolomics reveals the role of PPARα in Tripterygium Wilfordii-induced liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115090. [PMID: 35143937 DOI: 10.1016/j.jep.2022.115090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium glycosides tablets (TGT) and Tripterygium wilfordii tablets (TWT) have been used to treat autoimmune diseases clinically, however, the side effects of TWT are higher than TGT, especially for hepatotoxicity. THE AIM OF THE STUDY This study aims to determine the mechanism of TWT-induced liver injury. MATERIALS AND METHODS We performed metabolomic analysis of samples from mice with liver injury induced by TGT and TWT. Ppara-null mice were used to determine the role of PPARα in TWT-induced liver injury. RESULTS The results indicated that TWT induced the accumulation of medium- and long-chain carnitines metabolism, which was associated with the disruption of PPARα-IL6-STAT3 axis. PPARα agonists fenofibrate could reverse the liver injury from TWT and TP/Cel, and its protective role could be attenuated in Ppara-null mice. The toxicity difference of TWT and TGT was due to the different ratio of triptolide (TP) and celastrol (Cel) in the tablet in which TP/Cel was lower in TWT than TGT. The hepatotoxicity induced by TP and Cel also inhibited PPARα and upregulated IL6-STAT3 axis, which could be alleviated following by PPARα activation. CONCLUSIONS These results indicated that PPARα plays an important role in the hepatotoxicity of Tripterygium wilfordii, and PPARα activation may offer a promising approach to prevent hepatotoxicity induced by the preparations of Tripterygium wilfordii.
Collapse
Affiliation(s)
- Manyun Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wan Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofang Ma
- Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Cheng
- Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyan Wang
- Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Swarbrick CMD, Nanson JD, Patterson EI, Forwood JK. Structure, function, and regulation of thioesterases. Prog Lipid Res 2020; 79:101036. [PMID: 32416211 DOI: 10.1016/j.plipres.2020.101036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/15/2023]
Abstract
Thioesterases are present in all living cells and perform a wide range of important biological functions by catalysing the cleavage of thioester bonds present in a diverse array of cellular substrates. Thioesterases are organised into 25 families based on their sequence conservation, tertiary and quaternary structure, active site configuration, and substrate specificity. Recent structural and functional characterisation of thioesterases has led to significant changes in our understanding of the regulatory mechanisms that govern enzyme activity and their respective cellular roles. The resulting dogma changes in thioesterase regulation include mechanistic insights into ATP and GDP-mediated regulation by oligomerisation, the role of new key regulatory regions, and new insights into a conserved quaternary structure within TE4 family members. Here we provide a current and comparative snapshot of our understanding of thioesterase structure, function, and regulation across the different thioesterase families.
Collapse
Affiliation(s)
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Edward I Patterson
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales, Australia.
| |
Collapse
|
4
|
Ding K, Zhang L, Zhang T, Yang H, Brinkman R. The Effect of Melatonin on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Front Physiol 2019; 10:221. [PMID: 30941049 PMCID: PMC6433841 DOI: 10.3389/fphys.2019.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Melatonin is a highly conserved hormone in evolutionary history. It occurs in numerous organisms and plays a role in the endocrine and immune systems. Locomotor behavior is a basic behavior in animals and is an important indicator of circadian rhythms, which are coordinated by the nervous and endocrine systems. To date, the effect of melatonin on locomotor behavior has been studied in vertebrates, including syrian hamsters, sparrows, rats, zebrafish, goldfish, and flatworms. However, there have been few studies of the effects of melatonin on locomotor behavior in marine invertebrates. The goals of present study were to show the existence of melatonin in the sea cucumber Apostichopus japonicus and to evaluate its effect on locomotor activity. In addition, muscle tissues from control and melatonin-treated sea cucumbers were tested using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to determine the changes of metabolic activity in muscle. Melatonin was present in the coelomic fluid of A. japonicus at a concentration of ∼135.0 ng/L. The total distance traveled and number steps taken over 9 h after melatonin administration decreased with increasing concentration of the melatonin dose. Mean and maximum velocity of movement and stride length and stride frequency also decreased, but their differences were not statistically significant. Overall, these results suggest that melatonin administration had a sedative effect on A. japonicus. The levels of 22 different metabolites were altered in the muscle tissues of melatonin-treated sea cucumbers. Serotonin, 9-cis retinoic acid, all-trans retinoic acid, flavin mononucleotide in muscles were downregulated after melatonin administration. Moreover, a high free fatty acid (FFA) concentration and a decrease in the adenosine 5′-triphosphate (ATP) concentration in the muscle tissues of the melatonin-treated group were detected as well. These results suggest that the sedative effect of melatonin involves some other metabolic pathways, and the reduced locomotor modulator—serotonin, inhibited fatty acid oxidation and disturbed oxidative phosphorylation are potential physiological mechanisms that result in the inhibitory effect of melatonin on locomotion in sea cucumbers.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Richard Brinkman
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
5
|
The effects of PPARγ on the regulation of the TOMM40-APOE-C1 genes cluster. Biochim Biophys Acta Mol Basis Dis 2017; 1863:810-816. [PMID: 28065845 DOI: 10.1016/j.bbadis.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
Chromosome 19q13.32 is a gene rich region, and has been implicated in multiple human phenotypes in adulthood including lipids traits, Alzheimer's disease, and longevity. Peroxisome Proliferator Activated Receptor Gamma (PPARγ) is a ligand-activated nuclear transcription factor that plays a role in human complex traits that are also genetically associated with the chromosome 19q13.32 region. Here, we study the effects of PPARγ on the regional expression regulation of the genes clustered within chromosome 19q13.32, specifically TOMM40, APOE, and APOC1, applying two complementary approaches. Using the short hairpin RNA (shRNA) method in the HepG2 cell-line we knocked down PPARγ expression and measured the effect on mRNA expression. We discovered PPARγ knock down increased the levels of TOMM40-, APOE-, and APOC1-mRNAs, with the highest increase in expression observed for APOE-mRNA. To complement the PPARγ knockdown findings we also examined the effects of low doses of PPARγ agonists (nM range) on mRNA expression of these genes. Low (nM) concentrations of pioglitazone (Pio) decreased transcription of TOMM40, APOE, and APOC1 genes, with the lowest mRNA levels for each gene observed at 1.5nM. Similar to the effect of PPARγ knockdown, the strongest response to pioglitazone was also observed for APOE-mRNA, and rosiglitazone (Rosi), another PPARγ agonist, produced results that were consistent with these. In conclusion, our results further established a role for PPARγ in regional transcriptional regulation of chr19q13.32, underpinning the association between PPARγ, the chr19q13.32 genes cluster, and human complex traits and disease.
Collapse
|
6
|
Yi F, Tan XL, Yan X, Liu HB. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach. Chin Med 2016; 11:42. [PMID: 27708692 PMCID: PMC5037646 DOI: 10.1186/s13020-016-0112-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lepidium meyenii Walpers (maca) is an herb known as a traditional nutritional supplement and widely used in Peru, North America, and Europe to enhance human fertility and treat osteoporosis. The secondary metabolites of maca, namely, maca alkaloids, macaenes, and macamides, are bioactive compounds, but their targets are undefined. METHODS The pharmacophore-based PharmaDB targets database screening joint the ligand shape similarity-based WEGA validation approach is proposed to predict the targets of these unique constituents and was performed using Discovery Studio 4.5 and PharmaDB. A compounds-targets-diseases network was established using Cytoscape 3.2. These suitable targets and their genes were calculated and analyzed using ingenuity pathway analysis and GeneMANIA. RESULTS Certain targets were identified in osteoporosis (8 targets), prostate cancer (9 targets), and kidney diseases (11 targets). This was the first study to identify the targets of these bioactive compounds in maca for cardiovascular diseases (29 targets). The compound with the most targets (46) was an amide alkaloid (MA-24). CONCLUSION In silico target fishing identified maca's traditional effects on treatment and prevention of osteoporosis, prostate cancer, and kidney diseases, and its potential function of treating cardiovascular diseases, as the most important of this herb's possible activities.
Collapse
Affiliation(s)
- Fan Yi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| | - Xiao-Lei Tan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University City, Guangzhou, 510006 China
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| |
Collapse
|
7
|
Aloud BM, Raj P, O'Hara K, Shao Z, Yu L, Anderson HD, Netticadan T. Conjugated linoleic acid prevents high glucose-induced hypertrophy and contractile dysfunction in adult rat cardiomyocytes. Nutr Res 2015; 36:134-42. [PMID: 26826429 DOI: 10.1016/j.nutres.2015.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 01/22/2023]
Abstract
Diabetes mellitus is associated with increased risk and incidence of cardiovascular morbidity and mortality, independently of other risk factors typically associated with diabetes such as coronary artery disease and hypertension. This promotes the development of a distinct condition of the heart muscle known as diabetic cardiomyopathy. We have previously shown that conjugated linoleic acid (CLA) prevents endothelin-1-induced cardiomyocyte hypertrophy. However, the effects of CLA in preventing alterations in cardiomyocyte structure and function due to high glucose are unknown. We therefore hypothesized that CLA will have protective effects in an in vitro model of diabetic cardiomyopathy using adult rat cardiomyocytes exposed to high glucose. Our results demonstrate that subjecting adult rat cardiomyocytes to high glucose (25 mmol/L) for 24 hours significantly impaired the contractile function as evidenced by decreases in maximal velocity of shortening, peak shortening, and maximal velocity of relengthening. High glucose-induced contractile dysfunction was inhibited by pretreatment with CLA (30 μmol/L; 1 hour). In addition to contractile aberrations, exposing adult rat cardiomyocytes to high glucose for 48 hours induced cardiomyocyte hypertrophy. High glucose-induced cardiomyocyte hypertrophy was likewise prevented by CLA. The antihypertrophic effects of CLA were abolished when cardiomyocytes were pretreated with the pharmacologic inhibitor of peroxisome proliferator-activated receptor γ, GW9662 (1 μmol/L). In conclusion, our findings show that exposing cardiomyocytes to high glucose results in cardiomyocyte functional and structural abnormalities, and these abnormalities are prevented by pretreatment with CLA and mediated, in part, by peroxisome proliferator-activated receptor γ activation.
Collapse
Affiliation(s)
- Basma Milad Aloud
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada R2H 2A6
| | - Pema Raj
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada R2H 2A6
| | - Kimberley O'Hara
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada R2H 2A6
| | - Zongjun Shao
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada R2H 2A6
| | - Liping Yu
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada R2H 2A6
| | - Hope D Anderson
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada R2H 2A6; College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada R3E 0T5.
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada R2H 2A6.
| |
Collapse
|
8
|
Promoting return of function in multiple sclerosis: An integrated approach. Mult Scler Relat Disord 2013; 2:S2211-0348(13)00044-8. [PMID: 24363985 DOI: 10.1016/j.msard.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction.
Collapse
|
9
|
Clockaerts S, Bastiaansen-Jenniskens YM, Feijt C, Verhaar JAN, Somville J, De Clerck LS, Van Osch GJVM. Peroxisome proliferator activated receptor alpha activation decreases inflammatory and destructive responses in osteoarthritic cartilage. Osteoarthritis Cartilage 2011; 19:895-902. [PMID: 21458577 DOI: 10.1016/j.joca.2011.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Peroxisome proliferator activated receptor α (PPARα) agonists are used in clinical practice as lipid-lowering drugs and are also known to exert anti-inflammatory effects on various tissues. We hypothesized that PPARα activation leads to anti-inflammatory and anti-destructive effects in human OA cartilage. METHODS Cartilage explants obtained from six OA patients were cultured for 48 h with 10 ng/ml interleukin (IL)1β as a pro-inflammatory stimulus. 100 μM Wy-14643, a potent and selective PPARα agonist, was added to the cultures and gene expression of matrix metalloproteinase (MMP)1, MMP3, MMP13, collagen type II (COL2A1), aggrecan and PPARα in cartilage explants and the release of glycosaminoglycans (GAGs), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture media were analyzed and compared to the control without Wy-14643. RESULTS Addition of Wy-14643 decreased mRNA expression of MMP1, MMP3 and MMP13 in cartilage explants that responded to IL1β, whereas Wy-14643 did not affect gene expression of COL2A1 and aggrecan. Wy-14643 also decreased secretion of inflammatory marker NO in the culture medium of cartilage explants responding to IL1β. Wy-14643 inhibited the release of GAGs by cartilage explants in culture media. CONCLUSION PPARα agonist Wy-14643 inhibited the inflammatory and destructive responses in human OA cartilage explants and did not have an effect on COL2A1 or aggrecan mRNA expression. These effects of PPARα agonists on osteoarthritic cartilage warrant further investigation of these drugs as a potential therapeutic strategy for osteoarthritis (OA).
Collapse
Affiliation(s)
- S Clockaerts
- Department of Orthopaedic Surgery and Traumatology, University of Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
Orasanu G, Ziouzenkova O, Devchand PR, Nehra V, Hamdy O, Horton ES, Plutzky J. The peroxisome proliferator-activated receptor-gamma agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptor-alpha-dependent manner in vitro and in vivo in mice. J Am Coll Cardiol 2008; 52:869-81. [PMID: 18755353 PMCID: PMC2633943 DOI: 10.1016/j.jacc.2008.04.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/22/2008] [Accepted: 04/29/2008] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Our aim was to investigate if the peroxisome proliferator-activated receptor (PPAR)-gamma agonist pioglitazone modulates inflammation through PPARalpha mechanisms. BACKGROUND The thiazolidinediones (TZDs) pioglitazone and rosiglitazone are insulin-sensitizing PPARgamma agonists used to treat type 2 diabetes (T2DM). Despite evidence for TZDs limiting inflammation and atherosclerosis, questions exist regarding differential responses to TZDs. In a double-blinded, placebo-controlled 16-week trial among recently diagnosed T2DM subjects (n = 34), pioglitazone-treated subjects manifested lower triglycerides and lacked the increase in soluble vascular cell adhesion molecules (sVCAM)-1 evident in the placebo group. Previously we reported PPARalpha but not PPARgamma agonists could repress VCAM-1 expression. Since both triglyceride-lowering and VCAM-1 repression characterize PPARalpha activation, we studied pioglitazone's effects via PPARalpha. METHODS Pioglitazone effects on known PPARalpha responses--ligand binding domain activation and PPARalpha target gene expression--were tested in vitro and in vivo, including in wild-type and PPARalpha-deficient cells and mice, and compared with the effects of other PPARgamma (rosiglitazone) and PPARalpha (WY14643) agonists. RESULTS Pioglitazone repressed endothelial TNFalpha-induced VCAM-1 messenger ribonucleic acid expression and promoter activity, and induced hepatic IkappaBalpha in a manner dependent on both pioglitazone exposure and PPARalpha expression. Pioglitazone also activated the PPARalpha ligand binding domain and induced PPARalpha target gene expression, with in vitro effects that were most pronounced in endothelial cells. In vivo, pioglitazone administration modulated sVCAM-1 levels and IkappaBalpha expression in wild-type but not PPARalpha-deficient mice. CONCLUSIONS Pioglitazone regulates inflammatory target genes in hepatic (IkappaBalpha) and endothelial (VCAM-1) settings in a PPARalpha-dependent manner. These data offer novel mechanisms that may underlie distinct TZD responses.
Collapse
Affiliation(s)
- Gabriela Orasanu
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ouliana Ziouzenkova
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Pallavi R. Devchand
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Vedika Nehra
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Osama Hamdy
- Clinical Research Center, Joslin Diabetes Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Edward S. Horton
- Clinical Research Center, Joslin Diabetes Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jorge Plutzky
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Catalano M, Cortelazzo A, Santi R, Contino L, Demicheli M, Yilmaz Y, Zorzetto M, Campo I, Lanati N, Emanuele E. The Pro12Ala polymorphism of peroxisome proliferator-activated receptor-gamma2 gene is associated with plasma levels of soluble RAGE (Receptor for Advanced Glycation Endproducts) and the presence of peripheral arterial disease. Clin Biochem 2008; 41:981-5. [PMID: 18538667 DOI: 10.1016/j.clinbiochem.2008.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/15/2008] [Accepted: 05/15/2008] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Recent evidences suggest that the activation of peroxisome proliferator-activated receptor (PPAR)-gamma2, which plays an important role in vascular homeostasis, also regulates the expression of the Receptor for Advanced Glycation End products (RAGE). In turn, low levels of soluble RAGE (sRAGE) have recently emerged as a valuable biomarker of vascular inflammation. The potential alterations in sRAGE concentrations in peripheral arterial disease (PAD), however, have not been yet investigated. The aim of the present study was to clarify whether the Pro12Ala polymorphism of the PPAR-gamma2 gene is related to plasma sRAGE levels and the presence of PAD in nondiabetic Italian individuals. DESIGN AND METHODS A total of 201 patients with PAD and 201 PAD-free control subjects were investigated. Genotyping of the Pro12Ala polymorphism of the PPAR-gamma2 gene was performed by means of PCR-RFLPs. Plasma sRAGE levels were determined by ELISA. RESULTS Subjects carrying at least one Ala12 allele of the PPAR-gamma2 gene had lower sRAGE levels (all p values<0.001). The prevalence rate of the Ala12 allele was significantly higher in PAD patients (14.0%) than in controls (8.0%, p=0.009). In multivariate logistic regression analysis after adjustment for potential confounders, the Ala12 allele was significantly and independently associated with the risk of PAD (OR=1.57, 95% CI=1.11-2.65, p=0.021). CONCLUSIONS Our data indicate that the Ala12 allele of the PPAR-gamma2 gene is associated with lower levels of the soluble decoy receptor sRAGE and the presence of PAD.
Collapse
Affiliation(s)
- Mariella Catalano
- Research Centre on Vascular Diseases, VAS, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ahmed W, Ziouzenkova O, Brown J, Devchand P, Francis S, Kadakia M, Kanda T, Orasanu G, Sharlach M, Zandbergen F, Plutzky J. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J Intern Med 2007; 262:184-98. [PMID: 17645586 DOI: 10.1111/j.1365-2796.2007.01825.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) as ligand-activated nuclear receptors involved in the transcriptional regulation of lipid metabolism, energy balance, inflammation, and atherosclerosis are at the intersection of key pathways involved in the pathogenesis of diabetes and cardiovascular disease. Synthetic PPAR agonists like fibrates (PPAR-alpha) and thiazolidinediones (PPAR-gamma) are in therapeutic use to treat dyslipidaemia and diabetes. Despite strong encouraging in vitro, animal model, and human surrogate marker studies with these agents, recent prospective clinical cardiovascular trials have yielded mixed results, perhaps explained by concomitant drug use, study design, or a lack of efficacy of these agents on cardiovascular disease (independent of their current metabolic indications). The use of PPAR agents has also been limited by untoward effects. An alternative strategy to PPAR therapeutics is better understanding PPAR biology, the nature of natural PPAR agonists, and how these molecules are generated. Such insight might also provide valuable information about pathways that protect against the metabolic problems for which PPAR agents are currently indicated. This approach underscores the important distinction between the effects of synthetic PPAR agonists and the unequivocal biologic role of PPARs as key transcriptional regulators of metabolic and inflammatory pathways relevant to diabetes and atherosclerosis.
Collapse
Affiliation(s)
- W Ahmed
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Drexler AJ, Nesto RW, Abrahamson MJ, Bakris G, Bell D, Brunzell J, Dandona P, Davidson J, Fonseca V, Fowler M, Frye R, Giles T, Haffner S, Hollenberg N, Hsueh W, Law R, Plutzky J, Ratner R, Reusch J, Selwyn A, Sowers J, Wyne K, Young LH. Evaluating the Cardiovascular Effects of the Thiazolidinediones and Their Place in the Management of Type 2 Diabetes in Relation to the Metabolic Syndrome. Metab Syndr Relat Disord 2005; 3:147-73. [DOI: 10.1089/met.2005.3.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Andrew J. Drexler
- Clinical Associate Professor of Medicine, New York University School of Medicine, New York University, New York, New York
| | - Richard W. Nesto
- Department of Cardiovascular Medicine, Lahey Clinic Medical Center, Burlington, Massachusetts
| | - Martin J. Abrahamson
- Harvard Medical School, Chief of Adult Diabetes, Joslin Diabetes Center, Boston, Massachusetts
| | - George Bakris
- Hypertension Clinical Research Center, Department of Preventative Medicine, Rush–Presbyterian–St. Luke's Medical Center, Chicago, Illinois
| | - David Bell
- Endocrine Division Clinical Research, University of Alabama Medical School, Birmingham, Alabama
| | - John Brunzell
- Division of Metabolism, Endocrinology and Nutrition, General Clinical Research Center, University of Washington School of Medicine, Seattle, Washington
| | - Paresh Dandona
- State University of New York at Buffalo, Diabetes–Endocrinology Center of Western New York, Division of Endocrinology, Kaleida Health, Buffalo, New York
| | - Jaime Davidson
- University of Texas Southwest Medical Center, Endocrine and Diabetes Associates of America, Medical City Hospital Dallas, Dallas, Texas
| | - Vivian Fonseca
- Tullis Tulane Alumni Chair in Diabetes, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Michael Fowler
- Division of Cardiovascular Medicine, Medical Director, Cardiomyopathy Center, Director, Heart Failure Program, Stanford University School of Medicine, Stanford, California
| | | | - Thomas Giles
- Cardiovascular Research, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Steven Haffner
- University of Texas Health Science Center, San Antonio, Texas
| | - Norman Hollenberg
- Harvard Medical School, Physiologic Research, Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Willa Hsueh
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ronald Law
- Division of Endocrinology, Diabetes and Hypertension, UCLA School of Medicine, Los Angeles, California
| | - Jorge Plutzky
- The Vascular Disease Prevention Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robert Ratner
- Vice President, Scientific Affairs, Medstar Research Institute, Hyattsville, Maryland
| | - Jane Reusch
- University of Colorado, Denver VAMedical Center, Denver, Colorado
| | - Andrew Selwyn
- Harvard Medical School, Cardiovascular Division, Academic Affairs, Brigham and Women's Hospital, Boston, Massachusetts
| | - James Sowers
- Department of Internal Medicine, University of Missouri at Columbia, Columbia, Missouri
| | - Kathleen Wyne
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Lawrence H. Young
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Abstract
Insulin resistance is a common phenomenon of the metabolic syndrome, which is clinically characterized by a clustering of various cardiovascular risk factors in a single individual and a higher prevalence of respective complications, such as coronary heart disease and stroke. At the cellular level, insulin resistance is defined as a reduced insulin action, which can affect not only glucose uptake, but also gene regulation. Elucidation of novel signaling networks within the cell which are mediating and affecting insulin action will reveal many new genes and drug targets that are potentially of clinical relevance in the future. In this chapter, we propose that the metabolic syndrome might be a clinical consequence of altered gene regulation. This is illuminated in the context of transcription factors, e.g., sterol regulatory element binding proteins (SREBPs), coupling signals from nutrients, metabolites, and hormones at the gene regulatory level with pathobiochemical features of increased lipid accumulation in lean nonadipose tissues. The phenomenon of ectopic lipid accumulation (lipotoxicity) appears to be a novel link between insulin resistance, obesity, and possibly other features of the metabolic syndrome. Therefore, the investigation of specific gene regulatory networks and their alterations might be a clue to understanding the development and clustering of different cardiovascular risk factors in different individuals. As cellular sensors transcription factors--as common denominators of gene regulatory networks--might thereby also determine the susceptibility of individuals to cardiovascular risk factors and their complications.
Collapse
Affiliation(s)
- D Müller-Wieland
- Deutsches Diabetes-Zentrum, Institut für Klinische Biochemie und Pathobiochemie, Düsseldorf, Germany.
| | | |
Collapse
|
15
|
Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 2004; 13:125-38. [PMID: 15081469 DOI: 10.1016/s1054-8807(04)00004-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 01/08/2004] [Indexed: 12/23/2022] Open
Affiliation(s)
- Masanori Aikawa
- Donald W. Reynolds Cardiovascular Clinical Research Centers, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
16
|
Beckman J, Raji A, Plutzky J. Peroxisome proliferator activated receptor gamma and its activation in the treatment of insulin resistance and atherosclerosis: issues and opportunities. Curr Opin Cardiol 2004; 18:479-85. [PMID: 14597889 DOI: 10.1097/00001573-200311000-00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerosis remains a major complication of type 2 diabetes mellitus. Increasing data suggest insulin resistance, and its associated metabolic abnormalities, may underlie many of the cardiovascular complications seen among patients with insulin resistance and/or diabetes mellitus. This insight has also suggested that therapeutic approaches targeting insulin resistance may not only improve metabolism but also limit complications like atherosclerosis and the inflammation that contributes to it. Thiazolidinediones, agonists of the nuclear receptor peroxisome proliferator activated receptor gamma, are one such insulin-sensitizing therapeutic intervention in current use among patients with type 2 diabetes mellitus. The existing data regarding thiazolidinedione effects on the cardiovascular system are reviewed and considered, along with the future prospects for this emerging drug class.
Collapse
|
17
|
Abstract
Dyslipidemia and vascular inflammation play critical roles in the onset of acute coronary syndromes including myocardial infarction. Recent advances in cardiovascular medicine demonstrate that lipid-lowering therapy by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) prevents acute coronary complications, probably by limiting inflammation in atheroma. Although a number of studies have suggested various effects of statins on vascular dysfunction independent of lipid lowering, the clinical benefits of such effects are not established as yet.
Collapse
Affiliation(s)
- Masanori Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, USA.
| |
Collapse
|
18
|
Ziouzenkova O, Plutzky J. Lipolytic PPAR activation: new insights into the intersection of triglycerides and inflammation? Curr Opin Clin Nutr Metab Care 2004; 7:369-75. [PMID: 15192437 DOI: 10.1097/01.mco.0000134358.46159.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW To examine connections between triglyceride metabolism and inflammation, especially as they relate to transcriptional regulation through peroxisomal proliferator activated receptors activation. RECENT FINDINGS Peroxisomal proliferator activated receptors, members of the steroid hormone nuclear receptor family, have been of particular interest as a mechanism through which different dietary components might control gene expression. Extensive prior work has defined the central role peroxisomal proliferator activated receptors play in many key metabolic responses, including glucose control and lipid metabolism. Emerging evidence suggests peroxisomal proliferator activated receptor activation may limit inflammation and atherosclerosis. The demonstration that certain fatty acids can activate peroxisomal proliferator activated receptors belies the potential link between nutritional components and peroxisomal proliferator activated receptor responses. Interest in this connection had been heightened by recent evidence that lipolysis in certain situations can both generate peroxisomal proliferator activated receptor ligands and limit some known inflammatory responses. SUMMARY Lipolytic peroxisomal proliferator activated receptor activation suggests new ways in which to reconsider triglycerides and the distal consequences of their metabolism, including the possible effects on inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Ouliana Ziouzenkova
- The Vascular Disease Prevention Program, Brigham and Women's Hospital, Cardiovascular Division, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
19
|
|
20
|
Bays H, Stein EA. Pharmacotherapy for dyslipidaemia--current therapies and future agents. Expert Opin Pharmacother 2004; 4:1901-38. [PMID: 14596646 DOI: 10.1517/14656566.4.11.1901] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Current lipid-altering agents that lower low density lipoprotein cholesterol (LDL-C) primarily through increased hepatic LDL receptor activity include statins, bile acid sequestrants/resins and cholesterol absorption inhibitors such as ezetimibe, plant stanols/sterols, polyphenols, as well as nutraceuticals such as oat bran, psyllium and soy proteins; those currently in development include newer statins, phytostanol analogues, squalene synthase inhibitors, bile acid transport inhibitors and SREBP cleavage-activating protein (SCAP) activating ligands. Other current agents that affect lipid metabolism include nicotinic acid (niacin), acipimox, high-dose fish oils, antioxidants and policosanol, whilst those in development include microsomal triglyceride transfer protein (MTP) inhibitors, acylcoenzyme A: cholesterol acyltransferase (ACAT) inhibitors, gemcabene, lifibrol, pantothenic acid analogues, nicotinic acid-receptor agonists, anti-inflammatory agents (such as Lp-PLA(2) antagonists and AGI1067) and functional oils. Current agents that affect nuclear receptors include PPAR-alpha and -gamma agonists, while in development are newer PPAR-alpha, -gamma and -delta agonists, as well as dual PPAR-alpha/gamma and 'pan' PPAR-alpha/gamma/delta agonists. Liver X receptor (LXR), farnesoid X receptor (FXR) and sterol-regulatory element binding protein (SREBP) are also nuclear receptor targets of investigational agents. Agents in development also may affect high density lipoprotein cholesterol (HDL-C) blood levels or flux and include cholesteryl ester transfer protein (CETP) inhibitors (such as torcetrapib), CETP vaccines, various HDL 'therapies' and upregulators of ATP-binding cassette transporter (ABC) A1, lecithin cholesterol acyltransferase (LCAT) and scavenger receptor class B Type 1 (SRB1), as well as synthetic apolipoprotein (Apo)E-related peptides. Fixed-dose combination lipid-altering drugs are currently available such as extended-release niacin/lovastatin, whilst atorvastatin/amlodipine, ezetimibe/simvastatin, atorvastatin/CETP inhibitor, statin/PPAR agonist, extended-release niacin/simvastatin and pravastatin/aspirin are under development. Finally, current and future lipid-altering drugs may include anti-obesity agents which could favourably affect lipid levels.
Collapse
Affiliation(s)
- Harold Bays
- L-MARC Research Center, 3288 Illinois Avenue, Louisville, KY 40213, USA.
| | | |
Collapse
|
21
|
Abstract
Despite many advances in cardiology, atherosclerosis remains a major medical problem. This is especially the case for individuals with insulin resistance and type 2 diabetes mellitus. Atherosclerotic lesions can develop as early as the second decade of life and progress into clinical disease over time. Atherosclerosis is a complex disorder, involving many cell types and circulating mediators and resulting in an inflammatory state. The control of transcription of inflammatory mediators via ligands for peroxisome proliferator-activated receptor-gamma, such as thiazolidinediones (TZDs), has been raised as a possible mechanism for improving atherosclerosis. Results of studies performed in vitro and in animal models suggest that TZDs may increase cholesterol efflux from macrophages, decrease cytokine expression, and limit chemokine levels. Such effects may underlie the decreases in atherosclerosis seen in mouse models of atherosclerosis after TZD treatment. The direct actions of the TZDs on atherosclerosis may couple with their effects on metabolic parameters through increased insulin sensitivity. Ongoing clinical trials evaluating cardiovascular end points with TZD therapy should provide insight into these possibilities.
Collapse
Affiliation(s)
- Jorge Plutzky
- Vascular Disease Prevention Program, Cardiovascular Division, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
22
|
Plutzky J, Viberti G, Haffner S. Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complications 2002; 16:401-15. [PMID: 12477625 DOI: 10.1016/s1056-8727(02)00202-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ongoing heavy burden of cardiovascular disease associated with diabetes mellitus highlights the failure of current treatment strategies to address effectively the cardiovascular risk profile in such patients. Insulin resistance is not only an underlying feature in most cases of type 2 diabetes, but is also associated, through the Insulin Resistance Syndrome, with cardiovascular risk factors that promote atherothrombosis through diverse mechanisms. Growing evidence suggests that treatment with anti-diabetic agents that improve insulin sensitivity, such as the thiazolidinediones, improve multiple components of the Insulin Resistance Syndrome, have beneficial effects on various atherothrombotic mechanisms, and reduce atherosclerosis in animal models and perhaps humans as well. Given data implicating chronic inflammation as a central feature of atherosclerosis, the anti-inflammatory activity of the thiazolidinediones may contribute to their potential anti-atherosclerotic effects. An improved understanding of the mechanisms linking diabetes, atherosclerosis, and cardiovascular disease is needed in order to understand how these and other current and emerging therapies might reduce diabetes-associated cardiovascular disease.
Collapse
Affiliation(s)
- Jorge Plutzky
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
23
|
Carrillo-Jimenez R, Lamas GA, Hennekens CH. Thiazolidinediones could improve endothelial dysfunction and risk of premature coronary heart disease in HIV-infected patients. J Cardiovasc Pharmacol Ther 2002; 7:207-10. [PMID: 12490965 DOI: 10.1177/107424840200700402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of Human Immunodeficiency Virus (HIV) protease inhibitors as part of the Highly Active Antiretroviral Therapy (HAART) is associated with atherogenic dyslipoproteinemia, insulin resistance, hypertension and endothelial dysfunction, all of which contribute to premature coronary heart disease. These abnormalities appear to be associated with an increase in cardiovascular events in HIV-infected patients. Beneficial metabolic effects of anti-diabetic agents used in HIV-infected patients have been reported. The thiazolidinediones (TZDs), a new group of antidiabetic drugs, may modulate the proliferative and inflammatory cascades involved in atherosclerosis. Thus, an increasing totality of evidence suggests that TZDs may represent a unique and powerful research tool to find a common denominator underlying the pathophysiology and treatment of the metabolic cardiovascular risk factors associated with HIV infection.
Collapse
|