1
|
Radbakhsh S, Katsiki N, Santos RD, Mikhailidis DP, Mantzoros CS, Sahebkar A. Effects of statins on specialized pro-resolving mediators: An additional pathway leading to resolution of inflammation. Metabolism 2022; 132:155211. [PMID: 35533891 DOI: 10.1016/j.metabol.2022.155211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Statins are a class of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Anti-inflammatory and antioxidant properties, as well as improvement of endothelial function and plaque stabilization have also been proposed as parts of the pleiotropic effects of statins. Specialized pro-resolving mediators (SPMs) are endogenous lipid-derived molecules originating from ω-6 and ω-3 polyunsaturated fatty acids, such as arachidonic, docosahexaenoic and eicosapentaenoic acid that trigger and modulate the resolution of inflammation. Impaired SPM biosynthesis can lead to excessive or chronic inflammation and is implicated in the pathogenesis of several diseases. Exogenous administration of SPMs, including lipoxin, maresin, protectin, have been shown to improve both bacterial and viral infections, mainly in preclinical models, thus minimizing inflammation. Statin-triggered-SPM production in several in vitro and in vivo models may represent another anti-inflammatory pathway involving these drugs. This commentary discusses scientific publications on the effects of statins on SPMs and the resolution of inflammation process.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Center, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital campus, University College London, London, UK
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran.
| |
Collapse
|
2
|
An L, An S, Jia Z, Wang H, Yang Z, Xu C, Teng X, Wang J, Liu X, Cao Q, Wang S. Atorvastatin improves left ventricular remodeling and cardiac function in rats with congestive heart failure by inhibiting RhoA/Rho kinase-mediated endothelial nitric oxide synthase. Exp Ther Med 2018; 17:960-966. [PMID: 30651887 DOI: 10.3892/etm.2018.6976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects and possible mechanisms of atorvastatin (Ato) against chronic heart failure (CHF). A rat model of CHF was established and cardiac functions were assessed using Echocardiography. The expression of RhoA/Rho kinase and endothelial nitric oxide synthase (eNOS) was assessed using western blotting and reverse transcription polymerase chain reaction following 4 weeks of treatment. The three groups assessed in the present study were as follows: The control group (no treatment), the Ato + isopropylnoradrenaline (ISO) group (subcutaneous injections of 340 mg/kg ISO + orally administered 50 mg/kg Ato dissolved in saline; administered once daily) and the ISO group (subcutaneous injections of 340 mg/kg ISO + orally administered with an equal volume of saline; administered once daily). Heart volume and weight in the ISO group were significantly increased compared with the control (C) group (P<0.01), whereas contractility was decreased. The results were reverse for the Ato group when compared with the ISO group (P<0.05). Levels of RhoA/Rho kinase protein and mRNA were significantly increased in the ISO group (P<0.01); however. The mRNA and protein expression of eNOS was significantly decreased (P<0.05) when compared with the C group. The mRNA and protein expression of RhoA/Rho kinase was significantly reduced in the Ato+ISO group compared with the ISO group (P<0.01), whereas the mRNA and protein expression of eNOS was significantly increased (P<0.05). RhoA protein expression was increased in the cytoplasm of the C group and on the cell membrane of the ISO group; however, in the Ato+ISO group, RhoA protein expression on the cell membrane was significantly downregulated when compared with the ISO group (P<0.05). The results of the present study suggest that Ato upregulates eNOS by inhibiting RhoA/Rho kinase overexpression in the myocardial tissue of rats with CHF, thus improving left ventricular remodeling and cardiac function.
Collapse
Affiliation(s)
- Liping An
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Shoukuan An
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhuowen Jia
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Huan Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Zhaoying Yang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Chaoxin Xu
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xiane Teng
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Jipeng Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xiaodong Liu
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Qidong Cao
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Sha Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
3
|
Inulin from Jerusalem artichoke tubers alleviates hyperlipidemia and increases abundance of bifidobacteria in the intestines of hyperlipidemic mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
4
|
Johnson KW, Shameer K, Glicksberg BS, Readhead B, Sengupta PP, Björkegren JLM, Kovacic JC, Dudley JT. Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine. ACTA ACUST UNITED AC 2017; 2:311-327. [PMID: 30062151 PMCID: PMC6034501 DOI: 10.1016/j.jacbts.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The traditional paradigm of cardiovascular disease research derives insight from large-scale, broadly inclusive clinical studies of well-characterized pathologies. These insights are then put into practice according to standardized clinical guidelines. However, stagnation in the development of new cardiovascular therapies and variability in therapeutic response implies that this paradigm is insufficient for reducing the cardiovascular disease burden. In this state-of-the-art review, we examine 3 interconnected ideas we put forth as key concepts for enabling a transition to precision cardiology: 1) precision characterization of cardiovascular disease with machine learning methods; 2) the application of network models of disease to embrace disease complexity; and 3) using insights from the previous 2 ideas to enable pharmacology and polypharmacology systems for more precise drug-to-patient matching and patient-disease stratification. We conclude by exploring the challenges of applying a precision approach to cardiology, which arise from a deficit of the required resources and infrastructure, and emerging evidence for the clinical effectiveness of this nascent approach.
Collapse
Affiliation(s)
- Kipp W Johnson
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Khader Shameer
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin S Glicksberg
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ben Readhead
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Partho P Sengupta
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Medical Biochemistry and Biophysics Vascular Biology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Statin-Induced Cardioprotection Against Ischemia-Reperfusion Injury: Potential Drug-Drug Interactions. Lesson to be Learnt by Translating Results from Animal Models to the Clinical Settings. Cardiovasc Drugs Ther 2016; 29:461-7. [PMID: 26303765 DOI: 10.1007/s10557-015-6615-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Numerous interventions have been shown to limit myocardial infarct size in animal models; however, most of these interventions have failed to have a significant effect in clinical trials. One potential explanation for the lack of efficacy in the clinical setting is that in bench models, a single intervention is studied without the background of other interventions or modalities. This is in contrast to the clinical setting in which new medications are added to the "standard of care" treatment that by now includes a growing number of medications. Drug-drug interaction may lead to alteration, dampening, augmenting or masking the effects of the intended intervention. We use the well described model of statin-induced myocardial protection to demonstrate potential interactions with agents which are commonly concomitantly used in patients with stable coronary artery disease and/or acute coronary syndromes. These interactions could potentially explain the reduced efficacy of statins in the clinical trials compared to the animal models. In particular, caffeine and aspirin could attenuate the infarct size limiting effects of statins; morphine could delay the onset of protection or mask the protective effect in patients with ST elevation myocardial infarction, whereas other anti-platelet agents (dipyridamole, cilostazol and ticagrelor) may augment (or mask) the effect due to their favorable effects on adenosine cell reuptake and intracellular cAMP levels. We recommend that after characterizing the effects of new modalities in single intervention bench research, studies should be repeated in the background of standard-of-care medications to assure that the magnitude of the effect is not altered before proceeding with clinical trials.
Collapse
|
6
|
Apaya MK, Lin CY, Chiou CY, Yang CC, Ting CY, Shyur LF. Simvastatin and a Plant Galactolipid Protect Animals from Septic Shock by Regulating Oxylipin Mediator Dynamics through the MAPK-cPLA 2 Signaling Pathway. Mol Med 2016; 21:988-1001. [PMID: 26701313 DOI: 10.2119/molmed.2015.00082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/12/2015] [Indexed: 02/02/2023] Open
Abstract
Sepsis remains a major medical issue despite decades of research. Identification of important inflammatory cascades and key molecular mediators are crucial for developing intervention and prevention strategies. In this study, we conducted a comparative oxylipin metabolomics study to gain a comprehensive picture of lipid mediator dynamics during the initial hyperinflammatory phase of sepsis, and demonstrated, in parallel, the efficacy of simvastatin and plant galactolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) in the homeostatic regulation of the oxylipin metabolome using a lipopolysaccharide (LPS)-induced sepsis C57BL/6J mouse model. LPS increased the systemic and organ levels of proinflammatory metabolites of linoleic acid including leukotoxin diols (9-,10-DHOME, 12-,13-DHOME) and octadecadienoic acids (9-HODE and 13-HODE) and arachidonic acid-derived prostanoid, PGE2, and hydroxyeicosatetraenoic acids (8-, 12- and 15-HETE). Treatment with either compound decreased the levels of proinflammatory metabolites and elevated proresolution lipoxin A4, 5(6)-EET, 11(12)-EET and 15-deoxy-PGJ2. dLGG and simvastatin ameliorated the effects of LPS-induced mitogen-activated protein kinase (MAPK)-dependent activation of cPLA2, cyclooxygenase-2, lipoxygenase, cytochrome P450 and/or epoxide hydrolase lowered systemic TNF-α and IL-6 levels and aminotransferase activities and decreased organ-specific infiltration of inflammatory leukocytes and macrophages, and septic shock-induced multiple organ damage. Furthermore, both dLGG and simvastatin increased the survival rates in the cecal ligation and puncture (CLP) sepsis model. This study provides new insights into the role of oxylipins in sepsis pathogenesis and highlights the potential of simvastatin and dLGG in sepsis therapy and prevention.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yun Ting
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Simvastatin Increases Fibulin-2 Expression in Human Coronary Artery Smooth Muscle Cells via RhoA/Rho-Kinase Signaling Pathway Inhibition. PLoS One 2015. [PMID: 26207907 PMCID: PMC4514789 DOI: 10.1371/journal.pone.0133875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The composition and structure of the extracellular matrix (ECM) in the vascular wall and in the atherosclerotic plaque are important factors that determine plaque stability. Statins can stabilize atherosclerotic plaques by modulating ECM protein expression. Fibulins are important components of the ECM. We evaluated the in vitro effect of simvastatin on the expression of fibulin-1, -2, -4 and -5 in human coronary artery smooth muscle cells (SMCs) and the mechanisms involved. Cells were incubated with simvastatin (0.05–1 μM), mevalonate (100 and 200 μM), geranylgeranyl pyrophosphate (GGPP) (15 μM), farnesyl pyrophosphate (FPP) (15 μM), the Rho kinase (ROCK) inhibitor Y-27632 (15 and 20 μM), the Rac-1 inhibitor (another member of Rho family) NSC23766 (100 μM), arachidonic acid (a RhoA/ROCK activator, 25–100 μM) and other fatty acids that are not activators of RhoA/ROCK (25–100 μM). Gene expression was analyzed by quantitative real-time PCR, and fibulin protein levels were analyzed by western blotting and ELISA. Simvastatin induced a significant increase in mRNA and protein levels of fibulin-2 at 24 hours of incubation (p<0.05), but it did not affect fibulin-1, -4, and -5 expression. Mevalonate and GGPP were able to reverse simvastatin’s effect, while FPP did not. In addition, Y-27632, but not NSC23766, significantly increased fibulin-2 expression. Furthermore, activation of the RhoA/ROCK pathway with arachidonic acid decreased fibulin-2 mRNA. Simvastatin increased mRNA levels and protein expression of the ECM protein fibulin-2 through a RhoA and Rho-Kinase-mediated pathway. This increase could affect the composition and structure of the ECM.
Collapse
|
8
|
Campos-Estrada C, Liempi A, González-Herrera F, Lapier M, Kemmerling U, Pesce B, Ferreira J, López-Muñoz R, Maya JD. Simvastatin and Benznidazole-Mediated Prevention of Trypanosoma cruzi-Induced Endothelial Activation: Role of 15-epi-lipoxin A4 in the Action of Simvastatin. PLoS Negl Trop Dis 2015; 9:e0003770. [PMID: 25978361 PMCID: PMC4433340 DOI: 10.1371/journal.pntd.0003770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ana Liempi
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Michel Lapier
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Barbara Pesce
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Ferreira
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo López-Muñoz
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D. Maya
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
9
|
Snowden SG, Grapov D, Settergren M, D'Alexandri FL, Haeggström JZ, Fiehn O, Hyötyläinen T, Pedersen TL, Newman JW, Orešič M, Pernow J, Wheelock CE. High-dose simvastatin exhibits enhanced lipid-lowering effects relative to simvastatin/ezetimibe combination therapy. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:955-964. [PMID: 25516625 PMCID: PMC4270085 DOI: 10.1161/circgenetics.114.000606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Statins are the frontline in cholesterol reduction therapies; however, their use in combination with agents that possess complimentary mechanisms of action may achieve further reductions in low-density lipoprotein cholesterol. Thirty-nine patients were treated with either 80 mg simvastatin (n=20) or 10 mg simvastatin plus 10 mg ezetimibe (n=19) for 6 weeks. Dosing was designed to produce comparable low-density lipoprotein cholesterol reductions, while enabling assessment of potential simvastatin-associated pleiotropic effects. Baseline and post-treatment plasma were analyzed for lipid mediators (eg, eicosanoids and endocannabinoids) and structural lipids by liquid chromatography tandem mass spectrometry. After statistical analysis and orthogonal projections to latent structures multivariate modeling, no changes were observed in lipid mediator levels, whereas global structural lipids were reduced in response to both monotherapy (R(2)Y=0.74; Q(2)=0.66; cross-validated ANOVA P=7.0×10(-8)) and combination therapy (R(2)Y=0.67; Q(2)=0.54; cross-validated ANOVA P=2.6×10(-5)). Orthogonal projections to latent structures modeling identified a subset of 12 lipids that classified the 2 treatment groups after 6 weeks (R(2)Y=0.65; Q(2)=0.61; cross-validated ANOVA P=5.4×10(-8)). Decreases in the lipid species phosphatidylcholine (15:0/18:2) and hexosyl-ceramide (d18:1/24:0) were the strongest discriminators of low-density lipoprotein cholesterol reductions for both treatment groups (q<0.00005), whereas phosphatidylethanolamine (36:3e) contributed most to distinguishing treatment groups (q=0.017). Shifts in lipid composition were similar for high-dose simvastatin and simvastatin/ezetimibe combination therapy, but the magnitude of the reduction was linked to simvastatin dosage. Simvastatin therapy did not affect circulating levels of lipid mediators, suggesting that pleiotropic effects are not associated with eicosanoid production. Only high-dose simvastatin reduced the relative proportion of sphingomyelin and ceramide to phosphatidylcholine (q=0.008), suggesting a pleiotropic effect previously associated with a reduced risk of cardiovascular disease.
Collapse
Affiliation(s)
- Stuart G Snowden
- Department of Medical Biochemistry & Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Dmitry Grapov
- NIH West Coast Metabolomics Center, University of California
- USDA ARS Western Human Nutrition Research Center, Davis, CA
| | - Magnus Settergren
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Fabio Luiz D'Alexandri
- Department of Medical Biochemistry & Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Department of Medical Biochemistry & Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California
| | | | | | - John W Newman
- USDA ARS Western Human Nutrition Research Center, Davis, CA
- Department of Nutrition, University of California
| | - Matej Orešič
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - John Pernow
- Department of Medicine, Unit of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry & Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
The resolution of inflammation (RoI), once believed to be a passive process, has lately been shown to be an active and delicately orchestrated process. During the resolution phase of acute inflammation, novel mediators, including lipoxins and resolvins, which are members of the specialized pro-resolving mediators of inflammation, are produced. FPR2/ALXR, a receptor modulated by some of these lipids as well as by peptides (e.g., annexin A1), has been shown to be one of the receptors involved in the RoI. The aim of this perspective is to present the concept of the RoI from a medicinal chemistry point of view and to highlight the effort of the research community to discover and develop anti-inflammatory/pro-resolution small molecules to orchestrate inflammation by activation of FPR2/ALXR.
Collapse
Affiliation(s)
- Olivier Corminboeuf
- Actelion Pharmaceuticals Ltd. , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | | |
Collapse
|
11
|
Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol 2014; 307:C39-54. [PMID: 24696140 PMCID: PMC4080182 DOI: 10.1152/ajpcell.00024.2014] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022]
Abstract
Resolution of acute inflammation is an active process locally controlled by a novel genus of specialized pro-resolving mediators (SPM) that orchestrate key resolution responses. Hence, it is of general interest to identify individual bioactive mediators and profile their biosynthetic pathways with related isomers as well as their relation(s) to classic eicosanoids in mammalian tissues. Lipid mediator (LM)-SPM levels and signature profiles of their biosynthetic pathways were investigated using liquid chromatography-tandem mass spectrometry (LC-MS-MS)-based LM metabololipidomics. LM and SPM were identified using ≥6 diagnostic ions and chromatographic behavior matching with both authentic and synthetic materials. This approach was validated using the composite reference plasma (SRM1950) of 100 healthy individuals. Using targeted LM metabololipidomics, we profiled LM and SPM pathways in human peripheral blood (plasma and serum) and lymphoid organs. In these, we identified endogenous SPM metabolomes, namely, the potent lipoxins (LX), resolvins (Rv), protectins (PD), and maresins (MaR). These included RvD1, RvD2, RvD3, MaR1, and NPD1/PD1, which were identified in amounts within their bioactive ranges. In plasma and serum, principal component analysis (PCA) identified signature profiles of eicosanoids and SPM clusters. Plasma-SPM increased with omega-3 and acetylsalicylic acid intake that correlated with increased phagocytosis of Escherichia coli in whole blood. These findings demonstrate an approach for identification of SPM pathways (e.g., resolvins, protectins, and maresins) in human blood and lymphoid tissues that were in amounts commensurate with their pro-resolving, organ protective, and tissue regeneration functions. LM metabololipidomics coupled with calibration tissues and physiological changes documented herein provide a tool for functional phenotypic profiling.
Collapse
Affiliation(s)
- Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Masakazu Shinohara
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Al-Azzam SI, Alkhateeb AM, Alzoubi KH, Alzayadeen RN, Ababneh MA, Khabour OF. Atorvastatin treatment modulates the interaction between leptin and adiponectin, and the clinical parameters in patients with type II diabetes. Exp Ther Med 2013; 6:1565-1569. [PMID: 24255692 PMCID: PMC3829757 DOI: 10.3892/etm.2013.1347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to examine the effect of atorvastatin treatment on levels of leptin, adiponectin and insulin resistance, and their correlation with clinical parameters, in patients with type II diabetes. Patients with diabetes (n=394) were divided into two groups, comprising 161 patients who received 20 mg/day atorvastatin (statin group), and 233 patients who did not receive statins (statin-free group). The results showed that atorvastatin treatment of patients with diabetes was not associated with changes in leptin, adiponectin, the leptin/adiponectin (L/A) ratio or homeostasis model assessment-insulin resistance (HOMA-IR). However, low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and total cholesterol (Tchol) were positively correlated with leptin and L/A ratio in the statin group only (P<0.05). By contrast, high-density lipoprotein cholesterol (HDL-C) showed a significant positive correlation with adiponectin in the statin and statin-free groups (P<0.05). Additionally, a positive correlation was found between HOMA-IR and glycated hemoglobin (HbA1c), and TG, in both groups, whereas Tchol was positively correlated with HOMA-IR in the statin group only (P<0.05). When multivariate analysis was performed with HOMA-IR as the dependent variable, and with adjustment for age, body mass index (BMI) and waist circumference, HbA1c was found to be a significant predictor of HOMA-IR or insulin resistance. In conclusion, atorvastatin treatment may have several effects on the interaction between leptin and adiponectin, and on clinical parameters in patients with type II diabetes.
Collapse
Affiliation(s)
- Sayer I Al-Azzam
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | | | | | | | | |
Collapse
|
13
|
La Franca E, Caruso M, Sansone A, Iacona R, Ajello L, Mancuso D, Castellano F, Novo S, Assennato P. Relationship between inflammatory markers and new cardiovascular events in patients with acute myocardial infarction who underwent primary angioplasty. Glob J Health Sci 2013; 5:48-54. [PMID: 23777720 PMCID: PMC4776816 DOI: 10.5539/gjhs.v5n4p48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/05/2013] [Accepted: 03/10/2013] [Indexed: 01/08/2023] Open
Abstract
Introduction: The determination of inflammation markers in circulation has enabled an important improvement in the study of cardiovascular diseases. It was tested the hypothesis that non-specific markers such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and fibrinogen may provide prognostic information in patients with acute myocardial infarction with persistent ST-segment elevation (STEMI) undergoing primary angioplasty (PCI). Methods: Patients: A cohort of 197 consecutive patients with STEMI undergoing primary PCI was enrolled, evaluating during hospitalization, the peak values of the following markers of inflammation: ESR, CRP and fibrinogen. A telephone follow-up has been made in order to investigate any possible new cardiovascular events after hospital discharge and the procedure performed. Results: Higher values of CRP were statistically associated with adverse future events as composite endpoint and with the single endpoint of death. Furthermore, higher age, presence of hypertension, history of previous cardiovascular events, were statistically significantly associated with cardiac events at follow up. In this group were also overrepresented subjects with anterior myocardial infarction in the anterior localization and with an EF ≤ 35% at discharge. Conclusions: CRP appears to be a predictor of future cardiovascular events, confirming that a pro-inflammatory state promotes the progression of atherosclerotic disease and its complications.
Collapse
|
14
|
Rohilla A, Khan MU, Khanam R. Cardioprotective potential of simvastatin in the hyperhomocysteinemic rat heart. J Adv Pharm Technol Res 2012; 3:193-8. [PMID: 23057007 PMCID: PMC3459450 DOI: 10.4103/2231-4040.101018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The present study investigated the probable role of simvastatin, 3-hydroxymethyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitor, in abrogated cardioprotection in hyperhomocysteinemic (Hhcy) rat hearts. Isolated Langendorff's perfused normal and Hhcy rat hearts were subjected to 30-min global ischemia (I) followed by 120-min reperfusion (R). Assessment of myocardial damage was done by measuring infarct size and analyzing the release of lactate dehydrogenase (LDH) and creatine kinase (CK-MB) in coronary effluent. In addition, the oxidative stress in the heart was assessed by measuring lipid peroxidation and superoxide anion generation. I/R produced myocardial injury in normal and Hhcy rat hearts by increasing myocardial infarct size, LDH and CK in coronary effluent and oxidative stress. Hhcy rat hearts showed enhanced myocardial injury and high oxidative stress as compared to normal hearts. Treatment with Simvastatin (10 μMol) afforded cardioprotection against I/R-induced myocardial injury in normal and hyperhomocysteinemic rat hearts as assessed in terms of reductions in myocardial infarct size, LDH and CK levels in coronary effluent and oxidative stress. The reductions in the high degree of oxidative stress may be responsible for the observed cardioprotection afforded by simvastatin against I/R-induced myocardial injury in normal and hyperhomocysteinemic rat hearts.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmacy, NIMS University, Shobha Nagar, Jaipur, Rajasthan, India
| | | | | |
Collapse
|