1
|
Gu J, Jin J, Ren X, Zhang X, Li J, Wang X, Zhang S, Yin X, Zhang Q, Wang Z. Single-Cell Landscape and a Macrophage Subset Enhancing Brown Adipocyte Function in Diabetes. Diabetes Metab J 2024; 48:885-900. [PMID: 38853519 PMCID: PMC11449828 DOI: 10.4093/dmj.2023.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/07/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGRUOUND Metabolic dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), in which the abnormalities in brown adipose tissue (BAT) play important roles. However, the cellular composition and function of BAT as well as its pathological significance in diabetes remain incompletely understood. Our objective is to delineate the single-cell landscape of BAT-derived stromal vascular fraction (SVF) and their characteristic alterations in T2DM rats. METHODS T2DM was induced in rats by intraperitoneal injection of low-dose streptozotocin and high-fat diet feeding. Single-cell mRNA sequencing was then performed on BAT samples and compared to normal rats to characterize changes in T2DM rats. Subsequently, the importance of key cell subsets in T2DM was elucidated using various functional studies. RESULTS Almost all cell types in the BAT-derived SVF of T2DM rats exhibited enhanced inflammatory responses, increased angiogenesis, and disordered glucose and lipid metabolism. The multidirectional differentiation potential of adipose tissue-derived stem cells was also reduced. Moreover, macrophages played a pivotal role in intercellular crosstalk of BAT-derived SVF. A novel Rarres2+macrophage subset promoted the differentiation and metabolic function of brown adipocytes via adipose-immune crosstalk. CONCLUSION BAT SVF exhibited strong heterogeneity in cellular composition and function and contributed to T2DM as a significant inflammation source, in which a novel macrophage subset was identified that can promote brown adipocyte function.
Collapse
Affiliation(s)
- Junfei Gu
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyu Ren
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinjie Zhang
- Department of Biology, University College London, London, UK
| | - Jiaxuan Li
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaowei Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shucui Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xianlun Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhe Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Poteryaeva ON, Usynin IF. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function. BIOMEDITSINSKAIA KHIMIIA 2024; 70:206-217. [PMID: 39239895 DOI: 10.18097/pbmc20247004206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Endothelial dysfunction underlies the pathogenesis of many diseases, primarily cardiovascular diseases. Epidemiological studies have shown an inverse dependence between the plasma level of high-density lipoproteins (HDL) and cardiovascular diseases. The results of experimental studies indicate that the antiatherogenic effect of HDL is associated not only with their participation in the reverse transport of excess cholesterol, but also with their regulatory effect on the functions of cells of various organs and tissues, including endothelial cells. The purpose of this review is to consider recent data on the participation of plasma receptors and related intracellular signaling pathways in the mechanism of protective effect of HDL on endothelial cell functions. Understanding the mechanisms of cell function regulation under the influence of HDL is an important step for the development of new ways of pharmacological correction of impaired endothelial functions and creation of effective endothelial protection drugs.
Collapse
Affiliation(s)
- O N Poteryaeva
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| | - I F Usynin
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| |
Collapse
|
3
|
Li J, Yang S, Liu D, Yan Q, Guo H, Jiang Z. Neoagarotetraose Alleviates Atherosclerosis via Modulating Cholesterol and Bile Acid Metabolism in ApoE -/- Mice. Nutrients 2024; 16:1502. [PMID: 38794740 PMCID: PMC11124046 DOI: 10.3390/nu16101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is closely associated with metabolic disorders such as cholesterol accumulation, bile acid metabolism, and gut dysbiosis. Neoagarotetraose supplementation has been shown to inhibit obesity and alleviate type 2 diabetes, but its effects on modulating the development of atherosclerosis remain unexplored. Therefore, the present study was conducted to investigate the protective effects and potential mechanisms of neoagarotetraose on high-fat, high-cholesterol diet (HFHCD)-induced atherosclerosis in ApoE-/- mice. The results showed that neoagarotetraose supplementation decreased the atherosclerotic lesion area by 50.1% and the aortic arch lesion size by 80.4% compared to the HFHCD group. Furthermore, neoagarotetraose supplementation led to a significant reduction in hepatic lipid content, particularly non-high-density lipoprotein cholesterol. It also resulted in a substantial increase in total bile acid content in both urine and fecal samples by 3.0-fold and 38.7%, respectively. Moreover, neoagarotetraose supplementation effectively downregulated the intestinal farnesoid X receptor by 35.8% and modulated the expressions of its associated genes in both the liver and intestine. In addition, correlation analysis revealed strong associations between gut microbiota composition and fecal bile acid levels. These findings highlight the role of gut microbiota in neoagarotetraose-mitigating atherosclerosis in HFHCD-fed ApoE-/- mice. This study indicates the potential of neoagarotetraose as a functional dietary supplement for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Junyi Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
| | - Dan Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Huiyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| |
Collapse
|
4
|
Walker ME, De Matteis R, Perretti M, Dalli J. Resolvin T4 enhances macrophage cholesterol efflux to reduce vascular disease. Nat Commun 2024; 15:975. [PMID: 38316794 PMCID: PMC10844649 DOI: 10.1038/s41467-024-44868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.
Collapse
Affiliation(s)
- Mary E Walker
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roberta De Matteis
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Different Pathways of Cellular Cholesterol Efflux. Cell Biochem Biophys 2022; 80:471-481. [PMID: 35737216 DOI: 10.1007/s12013-022-01081-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Cholesterol efflux is the first and rate-limiting step of reverse cholesterol transport (RCT) from peripheric cells to the liver. The involvement of high-density lipoprotein (HDL) in RCT determines the atheroprotective properties of HDL. Cholesterol efflux from different membrane pools includes both passive and energy-dependent processes. The first type of route consists of cholesterol desorption from the cell membrane into the unstirred layer adjacent to the cell surface and diffusion in the water phase. Moreover, the selective uptake and facilitated diffusion of cholesterol and cholesteryl ester molecules through the hydrophobic tunnel in the scavenger receptor BI molecule does not require energy consumption. The second type of route includes active cholesterol export by the ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Several cholesterol acceptors specifically bind cholesterol and phospholipid molecules, and cholesterol binding to the albumin molecule, which acts as a shuttle, significantly increases cholesterol movement between acceptors and red blood cells, thus functioning as a sink for cholesterol. Cholesterol and phospholipid molecules effluxed from macrophages by ABCA1 are accepted exclusively by the lipid-free apolipoprotein apoA-I, which is the major protein moiety of HDL, whereas those effluxed by ABCG1 are accepted by HDL. ABCA1- and ABCG1-mediated cholesterol transport, together with cholesterol diffusion, largely determine cholesterol turnover at the physiological level of intracellular cholesterol. However, at cholesterol overload, ABCA1-mediated efflux prevails over other routes. The exchange of apoA-I between lipid-free and lipid-associated states and the synergism of nascent and mature HDL contribute to cholesterol efflux efficiency. Moreover, extracellular cholesterol deposits and microvesicles may be involved in RCT.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Scavenger receptor class B type 1 (SR-B1) promotes atheroprotection through its role in HDL metabolism and reverse cholesterol transport in the liver. However, evidence indicates that SR-B1 may impact atherosclerosis through nonhepatic mechanisms. RECENT FINDINGS Recent studies have brought to light various mechanisms by which SR-B1 affects lesional macrophage function and protects against atherosclerosis. Efferocytosis is efficient in early atherosclerotic lesions. At this stage, and beyond its role in cholesterol efflux, SR-B1 promotes free cholesterol-induced apoptosis of macrophages through its control of apoptosis inhibitor of macrophage (AIM). At more advanced stages, macrophage SR-B1 binds and mediates the removal of apoptotic cells. SR-B1 also participates in the induction of autophagy which limits necrotic core formation and increases plaque stability. SUMMARY These studies shed new light on the atheroprotective role of SR-B1 by emphasizing its essential contribution in macrophages during atherogenesis as a function of lesion stages. These new findings suggest that macrophage SR-B1 is a therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Thierry Huby
- Sorbonne Universités, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | | |
Collapse
|
7
|
Giammanco A, Noto D, Barbagallo CM, Nardi E, Caldarella R, Ciaccio M, Averna MR, Cefalù AB. Hyperalphalipoproteinemia and Beyond: The Role of HDL in Cardiovascular Diseases. Life (Basel) 2021; 11:life11060581. [PMID: 34207236 PMCID: PMC8235218 DOI: 10.3390/life11060581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperalphalipoproteinemia (HALP) is a lipid disorder characterized by elevated plasma high-density lipoprotein cholesterol (HDL-C) levels above the 90th percentile of the distribution of HDL-C values in the general population. Secondary non-genetic factors such as drugs, pregnancy, alcohol intake, and liver diseases might induce HDL increases. Primary forms of HALP are caused by mutations in the genes coding for cholesteryl ester transfer protein (CETP), hepatic lipase (HL), apolipoprotein C-III (apo C-III), scavenger receptor class B type I (SR-BI) and endothelial lipase (EL). However, in the last decades, genome-wide association studies (GWAS) have also suggested a polygenic inheritance of hyperalphalipoproteinemia. Epidemiological studies have suggested that HDL-C is inversely correlated with cardiovascular (CV) risk, but recent Mendelian randomization data have shown a lack of atheroprotective causal effects of HDL-C. This review will focus on primary forms of HALP, the role of polygenic inheritance on HDL-C, associated risk for cardiovascular diseases and possible treatment options.
Collapse
Affiliation(s)
- Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Carlo Maria Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Emilio Nardi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Rosalia Caldarella
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Marcello Ciaccio
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Maurizio Rocco Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
- Correspondence:
| |
Collapse
|
8
|
Gracia-Rubio I, Martín C, Civeira F, Cenarro A. SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Biomedicines 2021; 9:biomedicines9060612. [PMID: 34072125 PMCID: PMC8229968 DOI: 10.3390/biomedicines9060612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
High plasma level of low-density lipoprotein (LDL) is the main driver of the initiation and progression of cardiovascular disease (CVD). Nevertheless, high-density lipoprotein (HDL) is considered an anti-atherogenic lipoprotein due to its role in reverse cholesterol transport and its ability to receive cholesterol that effluxes from macrophages in the artery wall. The scavenger receptor B class type 1 (SR-B1) was identified as the high-affinity HDL receptor, which facilitates the selective uptake of cholesterol ester (CE) into the liver via HDL and is also implicated in the plasma clearance of LDL, very low-density lipoprotein (VLDL) and lipoprotein(a) (Lp(a)). Thus, SR-B1 is a multifunctional receptor that plays a main role in the metabolism of different lipoproteins. The aim of this review is to highlight the association between SR-B1 and CVD risk through mice and human genetic studies.
Collapse
Affiliation(s)
- Irene Gracia-Rubio
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Correspondence: or ; Tel.: +34-976-765-500 (ext. 142895)
| | - César Martín
- Instituto Biofisika (UPV/EHU, CSIC) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco UPB/EHU, 48940 Bilbao, Spain;
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Rohatgi A. Stressing the Endothelium to Assess Localized Inflammatory Potential and the Risk for Atherosclerotic Cardiovascular Disease. Circulation 2021; 143:1946-1948. [PMID: 33999663 PMCID: PMC8162315 DOI: 10.1161/circulationaha.121.053989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
10
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|