1
|
Shen R, Pan C, Yi G, Li Z, Dong C, Yu J, Zhang J, Dong Q, Yu K, Zeng Q. Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study. Metabolites 2024; 14:385. [PMID: 39057708 PMCID: PMC11278608 DOI: 10.3390/metabo14070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Epidemiological studies have shown an association between type 2 diabetes (T2D) and calcific aortic valve stenosis (CAVS), but the potential causal relationship and underlying mechanisms remain unclear. Therefore, we conducted a two-sample and two-step Mendelian randomization (MR) analysis to evaluate the association of T2D with CAVS and the mediating effects of circulating metabolites and blood pressure using genome-wide association study (GWAS) summary statistics. The inverse variance weighted (IVW) method was used for the primary MR analysis, and comprehensive sensitivity analyses were performed to validate the robustness of the results. Our results showed that genetically predicted T2D was associated with increased CAVS risk (OR 1.153, 95% CI 1.096-1.214, p < 0.001), and this association persisted even after adjusting for adiposity traits in multivariable MR analysis. Furthermore, the two-step MR analysis identified 69 of 251 candidate mediators that partially mediated the effect of T2D on CAVS, including total branched-chain amino acids (proportion mediated: 23.29%), valine (17.78%), tyrosine (9.68%), systolic blood pressure (8.72%), the triglyceride group (6.07-11.99%), the fatty acid group (4.78-12.82%), and the cholesterol group (3.64-11.56%). This MR study elucidated the causal impact of T2D on CAVS risk independently of adiposity and identified potential mediators in this association pathways. Our findings shed light on the pathogenesis of CAVS and suggest additional targets for the prevention and intervention of CAVS attributed to T2D.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guiwen Yi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Hypertension in obese type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive intervention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3586-98. [PMID: 24686488 PMCID: PMC4025026 DOI: 10.3390/ijerph110403586] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 11/16/2022]
Abstract
Increased body weight as well as type 2 diabetes (T2D) are found to be associated with increased incidence of hypertension, although the mechanisms facilitating hypertension in T2D or nondiabetic individuals are not clear. Therefore, in this study we compared the levels of insulin resistance (IR:OGIS), plasma insulin (PI:RIA) levels, and pro-inflammatory cytokines (IL-6 and TNF-α: ELISA), being risk factors previously found to be associated with hypertension, in T2D patients showing increased body weight (obese and overweight, BMI ≥ 25 kg/m2) with hypertension (group A, N = 30), or without hypertension (group B, N = 30), and in nonobese (BMI < 25 kg/m2), normotensive controls (group C, N = 15). We found that OGIS index was the lowest (A: 267 ± 35.42 vs. B: 342.89 ± 32.0, p < 0.01) and PI levels were the highest (A: 31.05 ± 8.24 vs. B: 17.23 ± 3.23, p < 0.01) in group A. In addition, IL-6 levels were higher in group A (A: 15.46 ± 5.15 vs. B: 11.77 ± 6.09; p < 0.05) while there was no difference in TNF-α levels. Our results have shown that appearance of hypertension in T2D patients with increased body weight was dependent on further increase in IR which was associated with the rise in pro-inflammatory IL-6 cytokine. The results imply that lifestyle intervention aimed to decrease IR might be beneficial in reducing the risk for hypertension in those T2D individuals.
Collapse
|
4
|
Davis-Ajami ML, Wu J, Fink JC. Differences in health services utilization and costs between antihypertensive medication users versus nonusers in adults with diabetes and concomitant hypertension from Medical Expenditure Panel Survey pooled years 2006 to 2009. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2014; 17:51-61. [PMID: 24438717 DOI: 10.1016/j.jval.2013.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 09/19/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
OBJECTIVES To compare population-level baseline characteristics, individual-level utilization, and costs between antihypertensive medication users versus nonusers in adults with diabetes and concomitant hypertension. METHODS This longitudinal retrospective observational research used Medical Expenditure Panel Survey household component pooled years 2006 to 2009 to analyze adults 18 years or older with nongestational diabetes and coexistent essential hypertension. Two groups were created: 1) antihypertensive medication users and 2) no antihypertensive pharmacotherapy. We examined average annualized health care costs and emergency department and hospital utilization. Accounting for Medical Expenditure Panel Survey's complex survey design, all analyses used longitudinal weights. Logistic regressions examined the likelihood of utilization and anytihypertensive medication use, and log-transformed multiple linear regression models assessed costs and antihypertensive medication use. RESULTS Of the 3261 adults identified with diabetes, 66% (n = 2137) had concomitant hypertension representing 38.7 million individuals during 2006 to 2009. Significantly, the 16% (n = 338) no antihypertensive pharmacotherapy group showed greater mean nights hospitalized (3.6 vs. 1.7, P = 0.0120), greater all-cause hospitalization events per 1000 patient months (41 vs. 24, P = 0.0.007), and lower mean diabetes-related and hypertension-related ambulatory visits. After adjusting for confounders, non-antihypertensive medication users showed 1.64 odds of hospitalization, 29% lower total, and 27% lower average annualized medical expenses compared with antihypertensive medication users. CONCLUSIONS In adults with diabetes and coexistent hypertension, we observed significantly greater hospitalizations and lower costs for the non antihypertensive pharmacotherapy group versus those using antihypertensive medications. The short-term time horizon greater hospitalizations with lower expenses among non-antihypertensive medication users with diabetes and concomitant hypertension warrant further study.
Collapse
Affiliation(s)
| | - Jun Wu
- South Carolina College of Pharmacy, University of South Carolina, Greenville, SC, USA
| | - Jeffrey C Fink
- University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Abstract
Cardiovascular diseases are the major causes of morbidity and mortality in people with diabetes. Macroangiopathy in diabetes is manifested by more accelerated and progressive atherosclerosis, which is more widely distributed. The pathogenesis of this accelerated atherosclerosis is multifactorial and includes very complex interactions. Several abnormalities - such as hyperglycemia, dyslipidemia, hypertension, endothelial dysfunction, renin-angiotensin system activation and chronic subclinical inflammation - all appear to play important roles in the development of diabetes-induced atherosclerosis. Treatment of the residual risk, other than glycemia, blood pressure and low-density lipoprotein cholesterol, remains important as the rate of diabetes increases worldwide. A synergistic multifactorial approach against both conventional cardiovascular risk factors and emerging risk factors, such as vasoactive systems, the AGE-RAGE axis, novel proteins, such as TRAIL, and the complement system, as well as oxidative stress and inflammation, may be a promising way to prevent macrovascular disease in diabetes. In this review we focus on the major causes and mechanisms of atherosclerotic disease in patients with diabetes and highlight emerging targets for therapeutic intervention.
Collapse
Affiliation(s)
- Riccardo Candido
- a Diabetic Centre, Azienda per i Servizi Sanitari n. 1 "Triestina", Via Puccini 48/50, 34148 Trieste, Italy.
| | - Stella Bernardi
- b Baker IDI Heart and Diabetes Institute, JDRF Centre for Diabetes Complications, 75 Commercial Road, Melbourne, 3004 Victoria, Australia.
| | - Terri J Allen
- c Baker IDI Heart and Diabetes Institute, JDRF Centre for Diabetes Complications, 75 Commercial Road, Melbourne, 3004 Victoria, Australia.
| |
Collapse
|