1
|
Liu N, Yin Z, Wang M, Kui H, Yuan Z, Tian Y, Liu C, Huang J. Pharmacodynamic and targeted amino acid metabolomics researches on the improvement of diabetic retinopathy with Fufang Xueshuantong component compatibility. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124194. [PMID: 38924945 DOI: 10.1016/j.jchromb.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The Fufang Xueshuantong capsule (FXT) has significant preventive and therapeutic effects on diabetic retinopathy(DR), but the compatibility of its active components remains to be thoroughly explored. In this study, a zebrafish diabetic retinopathy model was established using high-mixed sugars, and the optimal ratios of notoginseng total saponins, total salvianolic acid, astragaloside, and harpagide were selected through orthogonal experiments. Furthermore, we used UPLC-QqQ/MS to detect the changes in amino acid content of DR zebrafish tissues after administration of FXT and its compatible formula to analyze the effects of FXT and its compatible formula on amino acid metabolites. The results showed that the final compatibility ratios of the components were 8: 5: 1: 6.6 by comprehensive evaluation of the indicators. FXT and its compatibility formula had beneficial effects on retinal vasodilatation, lipid accumulation in the liver, total glucose, and VEGF levels in DR zebrafish, and all of them could call back some amino acid levels in DR zebrafish. In this research, we determined the compatible formulation of the active ingredients in the FXT and investigated their efficacy in DR zebrafish for further clinical applications.
Collapse
Affiliation(s)
- Ning Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqiang Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshuang Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Kalinke C, de Oliveira PR, Marcolino-Júnior LH, Bergamini MF. Nanostructures of Prussian blue supported on activated biochar for the development of a glucose biosensor. Talanta 2024; 274:126042. [PMID: 38583326 DOI: 10.1016/j.talanta.2024.126042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
This work emphasizes the utilization of biochar, a renewable material, as an interesting platform for anchoring redox mediators and bioreceptors in the development of economic, environmentally friendly biosensors. In this context, Fe(III) ions were preconcentrated on highly functionalized activated biochar, allowing the stable synthesis of Prussian blue nanostructures with an average size of 58.3 nm. The determination of glucose was carried out by indirectly monitoring the hydrogen peroxide generated through the enzymatic reaction, followed by its subsequent redox reaction with reduced Prussian blue (also known as Prussian white) in a typical electrochemical-chemical mechanism. The EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-Hydroxysuccinimide) pair was employed for the stable covalent immobilization of the enzyme on biochar. The biosensor demonstrated good enzyme-substrate affinity, as evidenced by the Michaelis-Menten apparent kinetic constant (4.16 mmol L-1), and analytical performance with a wide linear dynamic response range (0.05-5.0 mmol L-1), low limits of detection (0.94 μmol L-1) and quantification (3.13 μmol L-1). Additionally, reliable repeatability, reproducibility, stability, and selectivity were obtained for the detection of glucose in both real and spiked human saliva and blood serum samples.
Collapse
Affiliation(s)
- Cristiane Kalinke
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil; Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil.
| | - Paulo R de Oliveira
- Senai Institute of Innovation in Electrochemistry, 81920-380, Curitiba, PR, Brazil
| | - Luiz H Marcolino-Júnior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil
| | - Márcio F Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Rohilla M, Rishabh, Bansal S, Garg A, Dhiman S, Dhankhar S, Saini M, Chauhan S, Alsubaie N, Batiha GES, Albezrah NKA, Singh TG. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed Pharmacother 2023; 169:115881. [PMID: 37989030 DOI: 10.1016/j.biopha.2023.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and β-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and β-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.
Collapse
Affiliation(s)
- Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India
| | - Rishabh
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula, Haryana 134118, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India; M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nisreen Khalid Aref Albezrah
- Obstetric and Gynecology Department, Medicine College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
4
|
Lin T, Gubitosi-Klug RA, Channa R, Wolf RM. Pediatric Diabetic Retinopathy: Updates in Prevalence, Risk Factors, Screening, and Management. Curr Diab Rep 2021; 21:56. [PMID: 34902076 DOI: 10.1007/s11892-021-01436-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus and a major cause of vision loss worldwide. The purpose of this review is to provide an update on the prevalence of diabetic retinopathy in youth, discuss risk factors, and review recent advances in diabetic retinopathy screening. RECENT FINDINGS While DR has long been considered a microvascular complication, recent data suggests that retinal neurodegeneration may precede the vascular changes associated with DR. The prevalence of DR has decreased in type 1 diabetes (T1D) patients following the results of the Diabetes Control and Complications Trial and implementation of intensive insulin therapy, with prevalence ranging from 14-20% before the year 2000 to 3.7-6% after 2000. In contrast, the prevalence of diabetic retinopathy in pediatric type 2 diabetes (T2D) is higher, ranging from 9.1-50%. Risk factors for diabetic retinopathy are well established and include glycemic control, diabetes duration, hypertension, and hyperlipidemia, whereas diabetes technology use including insulin pumps and continuous glucose monitors has been shown to have protective effects. Screening for DR is recommended for youth with T1D once they are aged ≥ 11 years or puberty has started and diabetes duration of 3-5 years. Pediatric T2D patients are advised to undergo screening at or soon after diagnosis, and annually thereafter, due to the insidious nature of T2D. Recent advances in DR screening methods including point of care and artificial intelligence technology have increased access to DR screening, while being cost-saving to patients and cost-effective to healthcare systems. While the prevalence of diabetic retinopathy in youth with T1D has been declining over the last few decades, there has been a significant increase in the prevalence of DR in youth with T2D. Improving access to diabetic retinopathy screening using novel screening methods may help improve detection and early treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Tyger Lin
- Department of Pediatrics, Division of Pediatric Endocrinology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Rose A Gubitosi-Klug
- Department of Pediatrics, Division of Endocrinology, Case Western Reserve University School of Medicine and Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Roomasa Channa
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Risa M Wolf
- Department of Pediatrics, Division of Pediatric Endocrinology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
A NEW BIOMARKER QUANTIFYING THE EFFECT OF ANTI-VEGF THERAPY IN EYES WITH PROLIFERATIVE DIABETIC RETINOPATHY ON ULTRA-WIDE FIELD FLUORESCEIN ANGIOGRAPHY: RECOVERY STUDY. Retina 2021; 42:426-433. [PMID: 34803132 DOI: 10.1097/iae.0000000000003358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To quantify changes of the retinal vascular bed area (RVBA) in mm2 on stereographically projected ultra-wide field (UWF) fluorescein angiography (FA) images by in eyes with proliferative diabetic retinopathy (PDR) following anti-vascular endothelial growth factor (VEGF) injection. METHODS Prospective, observational study. The early-phase UWF FA images (Optos 200Tx) of 40 eyes with PDR and significant non-perfusion obtained at baseline and after 6 months (NCT02863354) were stereographically projected by correcting peripheral distortion. The global retinal vasculature on UWF FA was extracted for calculating RVBA by summing the real size (mm2) of all the pixels automatically. RESULTS For the entire cohort, global RVBA for the entire retina decreased from 67.1 ± 15.5 mm2 to 43.6 ± 18.8 mm2 after anti-VEGF treatment at 6 months (P < 0.001). In the sub-group receiving monthly anti-VEGF injections, global RVBA decreased from 68.7 ± 16.2 mm2 to 33.9 ± 13.3 mm2 (P < 0.001). In the sub-group receiving anti-VEGF every 3 months, global RVBA decreased from 65.6 ± 15.1 mm2 to 50.8 ± 19.3 mm2 (P = 0.004). CONCLUSIONS RVBA appears to be a new biomarker to indicate efficiency of retinal vascular changes after anti-VEGF injection. Eyes with PDR and significant non-perfusion demonstrate reduced RVBA following anti-VEGF treatment.
Collapse
|
6
|
Piotrowska M, Spodzieja M, Kuncewicz K, Rodziewicz-Motowidło S, Orlikowska M. CD160 protein as a new therapeutic target in a battle against autoimmune, infectious and lifestyle diseases. Analysis of the structure, interactions and functions. Eur J Med Chem 2021; 224:113694. [PMID: 34273660 DOI: 10.1016/j.ejmech.2021.113694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
The glycosylphosphatidylinositol-anchored transmembrane glycoprotein CD160 (cluster of differentiation 160) is a member of the immunoglobulin superfamily. Four isoforms, which differ by the presence or absence of an immunoglobulin-like domain and the mode of anchoring in the cell membrane, have been identified. CD160 has a significant impact on the proper functioning of the immune system by activating natural killer cells and inhibiting T cells. CD160 is a natural ligand for herpes virus entry mediator (HVEM), a member of the tumor necrosis factor superfamily. The CD160-HVEM complex is a rare example of direct interaction between the two different superfamilies. The interaction of these two proteins leads to the inhibition of CD4+ T cells which, in consequence, leads to the inhibition of the correct response of the immune system. Available research articles indicate that CD160 plays a role in various types of cancer, chronic viral diseases, malaria, paroxysmal nocturnal hemoglobinuria, atherosclerosis, autoimmune diseases, skin inflammation, acute liver damage and retinal vascular disease. We present here an overview of the CD160 protein, the general characteristics of the receptor and its isoforms, details of structural studies of CD160 and the CD160-HVEM complex, as well as a description of the role of this protein in selected human diseases.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
7
|
He X, Kuang G, Wu Y, Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med 2021; 11:e468. [PMID: 34185424 PMCID: PMC8236118 DOI: 10.1002/ctm2.468] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are small extracellular vesicles 40-160 nm in diameter that are secreted by almost all cell types. Exosomes can carry diverse cargo including RNA, DNA, lipids, proteins, and metabolites. Exosomes transfer substances and information between cells by circulating in body fluids and are thus involved in diverse physiological and pathological processes in the human body. Recent studies have closely associated exosomal microRNAs (miRNAs) with various human diseases, including diabetes mellitus (DM), which is a complex multifactorial metabolic disorder disease. Exosomal miRNAs are emerging as pivotal regulators in the progression of DM, mainly in terms of pancreatic β-cell injury and insulin resistance. Exosomal miRNAs are closely associated with DM-associated complications, such as diabetic retinopathy (DR), diabetic nephropathy (DN), and diabetic cardiomyopathy (DCM), etc. Further investigations of the mechanisms of action of exosomal miRNAs and their role in DM will be valuable for the thorough understanding of the physiopathological process of DM. Here, we have summarized recent findings regarding exosomal miRNAs associated with DM to provide a new strategy for identifying potential diagnostic biomarkers and drug targets for the early diagnosis and treatment, respectively, of DM.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Departments of Ultrasound Imaging, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Gaoyan Kuang
- Department of OrthopedicsThe First Affiliated Hospital of Hunan University of Chinese MedicineChangshaHunan410007China
- Postdoctoral Research WorkstationHinye Pharmaceutical Co. LtdChangshaHunan410331China
| | - Yongrong Wu
- Hunan university of Chinese MedicineChangshaHunan410208China
| | - Chunlin Ou
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
8
|
Abstract
Over the past decades, microfluidic devices based on many advanced techniques have aroused widespread attention in the fields of chemical, biological, and analytical applications. Integration of microdevices with a variety of chip designs will facilitate promising functionality. Notably, the combination of microfluidics with functional nanomaterials may provide creative ideas to achieve rapid and sensitive detection of various biospecies. In this review, focused on the microfluids and microdevices in terms of their fabrication, integration, and functions, we summarize the up-to-date developments in microfluidics-based analysis of biospecies, where biomarkers, small molecules, cells, and pathogens as representative biospecies have been explored in-depth. The promising applications of microfluidic biosensors including clinical diagnosis, food safety control, and environmental monitoring are also discussed. This review aims to highlight the importance of microfluidics-based biosensors in achieving high throughput, highly sensitive, and low-cost analysis and to promote microfluidics toward a wider range of applications.
Collapse
Affiliation(s)
- Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Feifei Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
9
|
Matuszewski W, Baranowska-Jurkun A, Stefanowicz-Rutkowska MM, Gontarz-Nowak K, Gątarska E, Bandurska-Stankiewicz E. The Safety of Pharmacological and Surgical Treatment of Diabetes in Patients with Diabetic Retinopathy-A Review. J Clin Med 2021; 10:705. [PMID: 33670143 PMCID: PMC7916896 DOI: 10.3390/jcm10040705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-infectious pandemic of the modern world; it is estimated that in 2045 it will affect 10% of the world's population. As the prevalence of diabetes increases, the problem of its complications, including diabetic retinopathy (DR), grows. DR is a highly specific neurovascular complication of diabetes that occurs in more than one third of DM patients and accounts for 80% of complete vision loss cases in the diabetic population. We are currently witnessing many groundbreaking studies on new pharmacological and surgical methods of treating diabetes. AIM The aim of the study is to assess the safety of pharmacological and surgical treatment of DM in patients with DR. MATERIAL AND METHODS An analysis of the data on diabetes treatment methods currently available in the world literature and their impact on the occurrence and progression of DR. RESULTS A rapid decrease in glycaemia leads to an increased occurrence and progression of DR. Its greatest risk accompanies insulin therapy and sulfonylurea therapy. The lowest risk of DR occurs with the use of SGLT2 inhibitors; the use of DPP-4 inhibitors and GLP-1 analogues is also safe. Patients undergoing pancreatic islet transplants or bariatric surgeries require intensive monitoring of the state of the eye, both in the perioperative and postoperative period. CONCLUSIONS It is of utmost importance to individualize therapy in diabetic patients, in order to gradually achieve treatment goals with the use of safe methods and minimize the risk of development and progression of DR.
Collapse
Affiliation(s)
- Wojciech Matuszewski
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Angelika Baranowska-Jurkun
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Magdalena Maria Stefanowicz-Rutkowska
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Katarzyna Gontarz-Nowak
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| | - Ewa Gątarska
- Nephrology, Transplantology and Internal Medicine Clinic, Pomeranian Medicine University in Szczecin, 70-204 Szczecin, Poland;
| | - Elżbieta Bandurska-Stankiewicz
- Department of Internal Medicine, Endocrinology, Diabetology and Internal Medicine Clinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.-J.); (M.M.S.-R.); (K.G.-N.); (E.B.-S.)
| |
Collapse
|
10
|
Tonabersat Inhibits Connexin43 Hemichannel Opening and Inflammasome Activation in an In Vitro Retinal Epithelial Cell Model of Diabetic Retinopathy. Int J Mol Sci 2020; 22:ijms22010298. [PMID: 33396676 PMCID: PMC7794685 DOI: 10.3390/ijms22010298] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 01/04/2023] Open
Abstract
This study was undertaken to evaluate the connexin hemichannel blocker tonabersat for the inhibition of inflammasome activation and use as a potential treatment for diabetic retinopathy. Human retinal pigment epithelial cells (ARPE-19) were stimulated with hyperglycemia and the inflammatory cytokines IL-1β and TNFα in order to mimic diabetic retinopathy molecular signs in vitro. Immunohistochemistry was used to evaluate the effect of tonabersat treatment on NLRP3, NLRP1, and cleaved caspase-1 expression and distribution. A Luminex cytokine release assay was performed to determine whether tonabersat affected proinflammatory cytokine release. NLRP1 was not activated in ARPE-19 cells, and IL-18 was not produced under disease conditions. However, NLRP3 and cleaved caspase-1 complex formation increased with hyperglycemia and cytokine challenge but was inhibited by tonabersat treatment. It also prevented the release of proinflammatory cytokines IL-1β, VEGF, and IL-6. Tonabersat therefore has the potential to reduce inflammasome-mediated inflammation in diabetic retinopathy.
Collapse
|
11
|
Gu C, Lhamo T, Zou C, Zhou C, Su T, Draga D, Luo D, Zheng Z, Yin L, Qiu Q. Comprehensive analysis of angiogenesis-related genes and pathways in early diabetic retinopathy. BMC Med Genomics 2020; 13:142. [PMID: 32993645 PMCID: PMC7526206 DOI: 10.1186/s12920-020-00799-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiogenesis is an important parameter in the development of diabetic retinopathy (DR), and it is indicative of an early stage evolving into a late phase. Therefore, examining the role of angiogenic factors in early DR is crucial to understanding the mechanism of neovascularization. METHODS The present study identified hub genes and pathways associated with angiogenesis in early DR using bioinformatics analysis. Genes from published literature and Gene Expression Omnibus (GEO) were collected and analysed. RESULTS We collected 73 genes from 70 published studies in PubMed, which were referred to as DR-related gene set 1 (DRgset1). The gene expression profile of GSE12610 was downloaded, and 578 differentially expressed genes (DEGs) between diabetic and normal samples were identified. DEGs and DRgset1 were further combined to create DR-related gene set 2 (DRgset2). After an enrichment analysis, we identified 12 GO terms and 2 pathways associated with neovascularization in DRgset1, and 8 GO terms and 2 pathways in DRgset2. We found 39 new genes associated with angiogenesis and verified 8 candidate angiogenesis-related genes in DR cells using real-time PCR: PIK3CB, ALDH3A1, ITGA7, FGF23, THBS1, COL1A1, MAPK13, and AIF1. We identified 10 hub genes associated with neovascularization by constructing a protein-protein interaction (PPI) network: TNF, VEGFA, PIK3CB, TGFB1, EDN1, MMP9, TLR4, PDGFB, MMP2, and THBS1. CONCLUSIONS The present study analysed angiogenesis-related genes and pathways in early DR in a comprehensive and systematic manner. PIK3CB, ALDH3A1, ITGA7, FGF23, THBS1, COL1A1, MAPK13, and AIF1 may be the candidate genes to further explore the mechanisms of angiogenesis in early DR. TNF, PIK3CB, TGFB1, EDN1, MMP9, TLR4, PDGFB, MMP2, and THBS1 may be new targets for early neovascularization therapy in the future.
Collapse
Affiliation(s)
- Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People's Hospital, Xizang, P.R. China
| | - Chen Zou
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People's Hospital, Xizang, P.R. China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Lili Yin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China.
- Department of Ophthalmology, Shigatse People's Hospital, Xizang, P.R. China.
| |
Collapse
|
12
|
Jung E, Jung WK, Park S, Kim HR, Kim J. Aucuba japonica extract inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy, with its bioactive components preventing VEGF-induced retinal vascular hyperpermeability. Food Sci Nutr 2020; 8:2895-2903. [PMID: 32566207 PMCID: PMC7300051 DOI: 10.1002/fsn3.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
Neovascularization in the retina is common pathophysiology of diabetic retinal microvasculopathy and exudative macular degeneration. Our study assessed the inhibitory activity of an ethanol-based extract of Aucuba japonica (AJE) on abnormal angiogenesis in the retina with a hyperoxia-induced neovascular retinopathy model. The inhibitory effects of aucubin, quercetin, and kaempferol, bioactive compounds, from A. japonica, on retinal vascular hyperpermeability were also examined. On the 7th postnatal day (P7), the C57BL/6 pups were exposed to a hyperoxic environment with 75% oxygen to develop the experimental angiogenesis in retinas. On the 12th postnatal day (P12), the pups were then returned to the normal atmospheric pressure of oxygen. From P12 to P16, the administration was intraperitoneal. The dose per day was 250 mg per kg weight. Retinal neovascularization was measured with retinal flat mounts prepared on P17. We also measured the vascular leakage mediated by the vascular endothelial growth factor (VEGF) in retinas. Mice treated with AJE had markedly smaller neovascular lesions, in comparison with vehicle-administered mice. AJE downregulated the expression of both VEGF protein and mRNA. In addition, aucubin, quercetin, and kaempferol ameliorated VEGF-induced retinal vascular leakage. The results of our study suggest that AJE is a potent antiangiogenic substance. AJE could also serve as a therapeutic agent for abnormal growth of vessels in the retina in patients with ischemic retinopathy. The bioactive compounds of AJE may be responsible for its antiangiogenic abilities.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of ToxicologyResearch Institute for Veterinary Science and College of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Woo Kwon Jung
- Department of Oral PathologySchool of DentistryJeonbuk National UniversityJeonjuKorea
| | - Su‐Bin Park
- Department of Oral PathologySchool of DentistryJeonbuk National UniversityJeonjuKorea
| | - Hyung Rae Kim
- Department of Oral PathologySchool of DentistryJeonbuk National UniversityJeonjuKorea
| | - Junghyun Kim
- Department of Oral PathologySchool of DentistryJeonbuk National UniversityJeonjuKorea
| |
Collapse
|
13
|
Song Y, Wang Z, Li H, Xing W, Wu Y, Li C, Liu Y, Han J, Wang W. The ethyl acetate extracts of radix trichosanthis protect retinal vascular endothelial cells from high glucose-induced injury. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111954. [PMID: 31085225 DOI: 10.1016/j.jep.2019.111954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix trichosanthis (RT) is a popular plant in China to treat diabetes. AIM OF THE STUDY The aim of this study is to investigate the therapeutic effect of different extracts of RT and explore the underlying mechanism. METHODS Ethyl acetate extracts of radix trichosanthis (ERT), methanol extracts of radix trichosanthis (MRT) and water extracts of radix trichosanthis (WRT) were prepared. The retinal vascular endothelial cells (RVEC) were stimulated with high glucose or high glucose plus different extracts of RT. Then, cell viability, Transwell assay, tube formation and BrdU assay were measured. In the end, the Hippo and Notch signaling pathways were evaluated to clarify the pharmacological mechanism. RESULTS The results indicated that ERT exhibited the best efficacy. It significantly inhibited cell viability, blocked cell migration, attenuated tube formation and reduced the ratio of proliferated cells. It also adjusted the Hippo and Notch signaling pathways. CONCLUSIONS ERT suppressed high glucose-induced injury in REVC by regulating the Hippo and Notch signaling pathways.
Collapse
Affiliation(s)
- Yongli Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Zhenglin Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Hongli Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Wei Xing
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Yan Wu
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Chun Li
- Modern Research Center of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Yonggang Liu
- School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Jing Han
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Wei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
14
|
Menguy T, Briaux A, Jeunesse E, Giustiniani J, Calcei A, Guyon T, Mizrahi J, Haegel H, Duong V, Soler V, Brousset P, Bensussan A, Raymond Letron I, Le Bouteiller P. Anti-CD160, Alone or in Combination With Bevacizumab, Is a Potent Inhibitor of Ocular Neovascularization in Rabbit and Monkey Models. ACTA ACUST UNITED AC 2018; 59:2687-2698. [DOI: 10.1167/iovs.18-24024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Anne Briaux
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III, Toulouse, France
| | - Elisabeth Jeunesse
- STROMALab, Université de Toulouse, EFS, ENVT, INSERM U1031, Toulouse, France et LabHPEC, Ecole Nationale Vétérinaire, Toulouse, France
| | - Jérôme Giustiniani
- INSERM UMR 976, Hôpital Saint-Louis, Paris, France
- Université Paris Diderot-Paris 7, Paris, France
- Institut Jean Godinot, Unicancer, F-51726 Reims, France
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, Reims, France
| | | | | | | | | | | | - Vincent Soler
- Unité de Rétine, Ophthalmology Department, Hôpital Pierre-Paul Riquet, Toulouse University Hospital, Place Baylac, Toulouse, France
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde UMR 1056 Inserm - Université Toulouse III, Toulouse, France
- Université Toulouse III, Toulouse, France
| | - Pierre Brousset
- Centre de Recherche en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
| | | | - Isabelle Raymond Letron
- STROMALab, Université de Toulouse, EFS, ENVT, INSERM U1031, Toulouse, France et LabHPEC, Ecole Nationale Vétérinaire, Toulouse, France
| | - Philippe Le Bouteiller
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Toulouse III, Toulouse, France
- INSERM UMR 976, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
15
|
Aster koraiensis Extract and Chlorogenic Acid Inhibit Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6402650. [PMID: 29849715 PMCID: PMC5937502 DOI: 10.1155/2018/6402650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/04/2018] [Indexed: 11/17/2022]
Abstract
Aster koraiensis extract (AKE) is a standard dietary herbal supplement. Chlorogenic acid (CA) is the major compound present in AKE. Retinal neovascularization is a common pathophysiology of retinopathy of prematurity, diabetic retinopathy, and wet form age-related macular degeneration. In this study, we aimed to evaluate the effects of AKE and CA on retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). Vascular endothelial growth factor- (VEGF-) induced tube formation was assayed in human vascular endothelial cells. Experimental retinal neovascularization was induced by exposing C57BL/6 mice to 75% oxygen on postnatal day 7 (P7) and then returning them to normal oxygen pressure on P12. AKE (25 and 50 mg/kg/day) and CA (25 and 50 mg/kg/day) were administered intraperitoneally for 5 days (P12–P16). Retinal flat mounts were prepared to measure the extent of retinal neovascularization at P17. The incubation of human vascular endothelial cells with AKE and CA (1–10 μg/mL) resulted in the inhibition of VEGF-mediated tube formation in a dose-dependent manner. The neovascular area was significantly smaller in AKE or CA-treated mice than in the vehicle-treated mice. These results suggest that AKE is a potent antiangiogenic agent and that its antiangiogenic activity may, in part, be attributable to the bioactive component CA.
Collapse
|
16
|
Mugisho OO, Green CR, Kho DT, Zhang J, Graham ES, Acosta ML, Rupenthal ID. The inflammasome pathway is amplified and perpetuated in an autocrine manner through connexin43 hemichannel mediated ATP release. Biochim Biophys Acta Gen Subj 2018; 1862:385-393. [DOI: 10.1016/j.bbagen.2017.11.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022]
|
17
|
Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina. Adv Drug Deliv Rev 2018; 126:127-144. [PMID: 29339146 DOI: 10.1016/j.addr.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
Abstract
Pathologies affecting the optic nerve and the retina are one of the major causes of blindness. These diseases include age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma, among others. Also, there are genetic disorders that affect the retina causing visual impairment. The prevalence of neurodegenerative diseases of the posterior segment is increased as most of them are related with the elderly. Even with the access to different treatments, there are some challenges in managing patients suffering retinal diseases. One of them is the need for frequent interventions. Also, an unpredictable response to therapy has suggested that different pathways may be playing a role in the development of these diseases. The management of these pathologies requires the development of controlled drug delivery systems able to slow the progression of the disease without the need of frequent invasive interventions, typically related with endophthalmitis, retinal detachment, ocular hypertension, cataract, inflammation, and floaters, among other. Biodegradable microspheres are able to encapsulate low molecular weight substances and large molecules such as biotechnological products. Over the last years, a large variety of active substances has been encapsulated in microspheres with the intention of providing neuroprotection of the optic nerve and the retina. The purpose of the present review is to describe the use of microspheres in chronic neurodegenerative diseases affecting the retina and the optic nerve. The advantage of microencapsulation of low molecular weight drugs as well as therapeutic peptides and proteins to be used as neuroprotective strategy is discussed. Also, a new use of the microspheres in the development of animal models of neurodegeneration of the posterior segment is described.
Collapse
|
18
|
Agustini D, Bergamini MF, Marcolino-Junior LH. Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis. Biosens Bioelectron 2017; 98:161-167. [DOI: 10.1016/j.bios.2017.06.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/07/2017] [Accepted: 06/16/2017] [Indexed: 11/16/2022]
|
19
|
Feldman-Billard S, Larger É, Massin P. Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. DIABETES & METABOLISM 2017; 44:4-14. [PMID: 29217386 DOI: 10.1016/j.diabet.2017.10.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/18/2022]
Abstract
AIM To review the frequency, importance of and risk factors for "early worsening of diabetic retinopathy" (EWDR) after rapid improvement of blood glucose in patients with diabetes. METHODS This was a systematic review of key references (PubMed 1980-2016) and the current international recommendations for the above-mentioned topics. RESULTS EWDR has been described during intensive treatment (IT) in patients with uncontrolled type 1 or 2 diabetes, and after pancreas transplantation or bariatric surgery. EWDR arises in 10-20% of patients within 3-6 months after abrupt improvement of glucose control, and in nearly two times that proportion in patients with advanced baseline diabetic retinopathy (DR). While EWDR is often transient and predominantly driven by the development of cotton-wool spots and intraretinal microvascular abnormalities in patients with no or minimal DR, it can lead to irreversible retinal damage in patients with advanced DR before IT. Its identified risk factors include higher baseline levels and larger magnitudes of reduction of HbA1c, longer diabetes durations and previous severity of DR. CONCLUSION Intensive diabetes treatment inducing a rapid fall in glucose should prompt vigilance and caution, particularly in patients with long-term and uncontrolled diabetes and DR prior to IT. Careful retinal examination should be performed in all patients before initiating IT; however, in patients with severe non-proliferative or proliferative DR, panretinal photocoagulation therapy should be performed promptly. During the year following IT, quarterly eye monitoring is required in patients at high risk of EWDR (long-term uncontrolled diabetes, previous advanced DR), whereas follow-up every 6 months can be applied in patients with short-term diabetes and no/minimal DR before IT. To date, there is no evidence that controlling the speed or magnitude of HbA1c decreases will reduce the risk of EWDR in patients with diabetes.
Collapse
Affiliation(s)
- S Feldman-Billard
- Service de médecine interne, CHNO des Quinze-Vingts, 28, rue de Charenton, 75571 Paris cedex 12, France.
| | - É Larger
- Département hospitalo-universitaire, service de diabétologie, hôpital Cochin, 75014 Paris, France; Inserm U1016, Institut Cochin, université de Paris René Descartes, 75014 P aris, France
| | - P Massin
- Centre d'ophtalmologie Breteuil, centre Broca, hôpital Lariboisière, Paris, France
| | | |
Collapse
|
20
|
He X, Ou C, Xiao Y, Han Q, Li H, Zhou S. LncRNAs: key players and novel insights into diabetes mellitus. Oncotarget 2017; 8:71325-71341. [PMID: 29050364 PMCID: PMC5642639 DOI: 10.18632/oncotarget.19921] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) are a class of endogenous RNA molecules, which have a transcribing length of over 200 nt, lack a complete functional open reading frame (ORF), and rarely encode a functional short peptide. Recent studies have revealed that disruption of LncRNAs levels correlates with several human diseases, including diabetes mellitus (DM), a complex multifactorial metabolic disorder affecting more than 400 million people worldwide. LncRNAs are emerging as pivotal regulators in various biological processes, in the progression of DM and its associated complications, involving pancreatic β-cell disorder, insulin resistance, and epigenetic regulation, etc. Further investigation into the mechanisms of action of LncRNAs in DM will be of great value in the thorough understanding of pathogenesis. However, prior to successful application of LncRNAs, further search for molecular biomarkers and drug targets to provide a new strategy for DM prevention, early diagnosis, and therapy is warranted.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunlin Ou
- Cancer Research Institute, Central South University, Changsha 410078, China
| | - Yanhua Xiao
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Qing Han
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Suxian Zhou
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
21
|
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, and Department of Pediatrics, University of Florida Diabetes Institute, University of Florida, Gainesville, FL
| | - Concepcion R Nierras
- Past Senior Director, International Partnerships and Cure Therapeutics, JDRF, New York, NY
| |
Collapse
|
22
|
Diabetic complications in the cornea. Vision Res 2017; 139:138-152. [PMID: 28404521 DOI: 10.1016/j.visres.2017.03.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Diabetic corneal alterations, such as delayed epithelial wound healing, edema, recurrent erosions, neuropathy/loss of sensitivity, and tear film changes are frequent but underdiagnosed complications of both type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. The disease affects corneal epithelium, corneal nerves, tear film, and to a lesser extent, endothelium, and also conjunctiva. These abnormalities may appear or become exacerbated following trauma, as well as various surgeries including retinal, cataract or refractive. The focus of the review is on mechanisms of diabetic corneal abnormalities, available animal, tissue and organ culture models, and emerging treatments. Changes of basement membrane structure and wound healing rates, the role of various proteinases, advanced glycation end products (AGEs), abnormal growth and motility factors (including opioid, epidermal, and hepatocyte growth factors) are analyzed. Experimental therapeutics under development, including topical naltrexone, insulin, inhibitors of aldose reductase, and AGEs, as well as emerging gene and cell therapies are discussed in detail.
Collapse
|
23
|
Escudero CA, Herlitz K, Troncoso F, Guevara K, Acurio J, Aguayo C, Godoy AS, González M. Pro-angiogenic Role of Insulin: From Physiology to Pathology. Front Physiol 2017; 8:204. [PMID: 28424632 PMCID: PMC5380736 DOI: 10.3389/fphys.2017.00204] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
The underlying molecular mechanisms involve in the regulation of the angiogenic process by insulin are not well understood. In this review article, we aim to describe the role of insulin and insulin receptor activation on the control of angiogenesis and how these mechanisms can be deregulated in human diseases. Functional expression of insulin receptors and their signaling pathways has been described on endothelial cells and pericytes, both of the main cells involved in vessel formation and maturation. Consequently, insulin has been shown to regulate endothelial cell migration, proliferation, and in vitro tubular structure formation through binding to its receptors and activation of intracellular phosphorylation cascades. Furthermore, insulin-mediated pro-angiogenic state is potentiated by generation of vascular growth factors, such as the vascular endothelial growth factor, produced by endothelial cells. Additionally, diseases such as insulin resistance, obesity, diabetes, and cancer may be associated with the deregulation of insulin-mediated angiogenesis. Despite this knowledge, the underlying molecular mechanisms need to be elucidated in order to provide new insights into the role of insulin on angiogenesis.
Collapse
Affiliation(s)
- Carlos A Escudero
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile.,Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile
| | - Kurt Herlitz
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Felipe Troncoso
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Katherine Guevara
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Jesenia Acurio
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Basic Sciences Department, Universidad del Bío BíoChillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile.,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile
| | - Alejandro S Godoy
- Department of Physiology, Pontificia Universidad Católica de ChileSantiago, Chile.,Department of Urology, Roswell Park Cancer InstituteBuffalo, NY, USA
| | - Marcelo González
- Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile.,Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad of ConcepciónConcepción, Chile
| |
Collapse
|
24
|
Curcumolide reduces diabetic retinal vascular leukostasis and leakage partly via inhibition of the p38MAPK/NF-κ B signaling. Bioorg Med Chem Lett 2017; 27:1835-1839. [PMID: 28274631 DOI: 10.1016/j.bmcl.2017.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023]
Abstract
Retinal inflammation in a hyperglycemic condition is believed to play a crucial role in the development of diabetic retinopathy, and targeting inflammatory mediators is a promising strategy for the control of diabetic retinopathy. Curcumolide, a novel sesquiterpenoid with a unique 5/6/5 tricyclic skeleton, was isolated from Curcuma wenyujin. In this study, we demonstrate that treatment with curcumolide alleviated retinal inflammatory activities both in vitro and in vivo in a STZ-induced diabetic rat model and in TNF-α-stimulated HUVECs. Curcumolide alleviated retinal vascular permeability and leukostasis and attenuated the overexpression of TNF-α and ICAM-1 in diabetic retinas. Moreover, curcumolide also inhibited inducible p38 MAPK and NF-κB activation and the subsequent induction of proinflammatory mediators. These data suggest potential treatment strategies against diabetic retinopathy, particularly in the early stages of the disease.
Collapse
|