1
|
Cho H, Lim J. The emerging role of gut hormones. Mol Cells 2024:100126. [PMID: 39426686 DOI: 10.1016/j.mocell.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The gut is traditionally recognized as the central organ for the digestion and absorption of nutrients, however it also functions as a significant endocrine organ, secreting a variety of hormones such as glucagon-like peptide 1 (GLP-1), serotonin, somatostatin, and glucocorticoids. These gut hormones, produced by specialized intestinal epithelial cells (IECs), are crucial not only for digestive processes but also for the regulation of a wide range of physiological functions, including appetite, metabolism, and immune responses. While gut hormones can exert systemic effects, they also play a pivotal role in maintaining local homeostasis within the gut. This review discusses the role of the gut as an endocrine organ, emphasizing the stimuli, the newly discovered functions, and the clinical significance of gut-secreted hormones. Deciphering the emerging role of gut hormones will lead to a better understanding of gut homeostasis, innovative treatments for disorders in the gut as well as systemic diseases.
Collapse
Affiliation(s)
- Hyeryeong Cho
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; The Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Chung TK, Lee HA, Lee K, Jang SB, Yu K, Lee H. A population
PK–PD
model of
YH4808
, a novel
P‐CAB
, and intragastric
pH
that incorporated negative feedback by increased intragastric
pH
onto the systemic exposure to
YH4808. CPT Pharmacometrics Syst Pharmacol 2022; 11:1223-1233. [PMID: 35748058 PMCID: PMC9469698 DOI: 10.1002/psp4.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022] Open
Abstract
YH4808 is a novel potassium‐competitive acid blocker that is under clinical development to treat patients with gastroesophageal reflux disease and peptic ulcer diseases. In this study, the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of YH4808 were modeled in healthy male volunteers who received a single oral dose of YH4808 at 30, 50, 100, 200, 400, 600, and 800 mg or matching placebo and multiple once‐daily oral doses of YH4808 at 100, 200, and 400 mg or matching placebo for 7 days. A population PK–PD model adequately described the time–concentration‐effect profiles of YH4808. The maximum increasing effect of YH4808 on intragastric pH was 4.38, which was higher than the observed maximum increase in intragastric pH after omeprazole at 40 mg (2.2 in pH). The maximum inhibitory effect by the increased intragastric pH on the exposure to repeated YH4808 was 58% from baseline. Monte–Carlo simulation experiments based on the final model showed that YH4808 at 200 mg will produce a higher percentage of time at pH > 4 over 24 h on day 1 than observed value of esomeprazole at 40 mg once‐daily, an active comparator (84.7% time vs. 58.3% time, respectively). Because YH4808 at ≥200 mg resulted in a higher percentage of time at intragastric pH > 4 than seen after once‐daily esomeprazole at 40 mg and YH4808 showed acceptable tolerability at a single‐dose of 30–800 mg, we suggest to test the 200 mg once daily dosage regimen in further clinical trials of YH4808.
Collapse
Affiliation(s)
- Tae Kyu Chung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology Seoul National University Seoul South Korea
| | - Hyun A. Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology Seoul National University Seoul South Korea
- Department of Clinical Pharmacology and Therapeutics Seoul National University College of Medicine and Hospital Seoul South Korea
| | - Kyeong‐Ryoon Lee
- Laboratory Animal Resource Center Korea Research Institute of Bioscience and Biotechnology Ochang Chungbuk South Korea
- Department of Bioscience University of Science and Technology Daejeon South Korea
| | - Seong Bok Jang
- Clinical Pharmacology Team, Clinical Development and Medical Department Yuhan Corporation Seoul South Korea
| | - Kyung‐Sang Yu
- Department of Clinical Pharmacology and Therapeutics Seoul National University College of Medicine and Hospital Seoul South Korea
| | - Howard Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology Seoul National University Seoul South Korea
- Department of Clinical Pharmacology and Therapeutics Seoul National University College of Medicine and Hospital Seoul South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology Seoul National University Seoul South Korea
- Center for Convergence Approaches in Drug Development Seoul South Korea
- Advanced Institutes of Convergence Technology Suwon South Korea
| |
Collapse
|
3
|
Role of Somatostatin Signalling in Neuroendocrine Tumours. Int J Mol Sci 2022; 23:ijms23031447. [PMID: 35163374 PMCID: PMC8836266 DOI: 10.3390/ijms23031447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Somatostatin (SST) is a small peptide that exerts inhibitory effects on a wide range of neuroendocrine cells. Due to the fact that somatostatin regulates cell growth and hormone secretion, somatostatin receptors (SSTRs) have become valuable targets for the treatment of different types of neuroendocrine tumours (NETs). NETs are a heterogeneous group of tumours that can develop in various parts of the body, including the digestive system, lungs, and pituitary. NETs are usually slow growing, but they are often diagnosed in advanced stages and can display aggressive behaviour. The mortality rate of NETs is not outstandingly increased compared to other malignant tumours, even in the metastatic setting. One of the intrinsic properties of NETs is the expression of SSTRs that serve as drug targets for SST analogues (SSAs), which can delay tumour progression and downregulate hormone overproduction. Additionally, in many NETs, it has been demonstrated that the SSTR expression level provides a prognostic value in predicting a therapeutic response. Furthermore, higher a SSTR expression correlates with a better survival rate in NET patients. In recent studies, other epigenetic regulators affecting SST signalling or SSA–mTOR inhibitor combination therapy in NETs have been considered as novel strategies for tumour control. In conclusion, SST signalling is a relevant regulator of NET functionality. Alongside classical SSA treatment regimens, future advanced therapies and treatment modalities are expected to improve the disease outcomes and overall health of NET patients.
Collapse
|
4
|
Mennah-Govela YA, Bornhorst GM. Food buffering capacity: quantification methods and its importance in digestion and health. Food Funct 2021; 12:543-563. [DOI: 10.1039/d0fo02415e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the influence of food properties on buffering capacity will have an impact on gastric secretions and breakdown during digestion.
Collapse
Affiliation(s)
- Yamile A. Mennah-Govela
- Department. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| | - Gail M. Bornhorst
- Department. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| |
Collapse
|
5
|
Camilo SMP, Almeida ÉCDS, Sousa JB, Camilo LP, Etchebehere RM. CHRONIC USE OF PROTON PUMP INHIBITORS AND THE QUANTITY OF G, D, AND ECL CELLS IN THE STOMACH. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2020; 33:e1506. [PMID: 32844883 PMCID: PMC7448853 DOI: 10.1590/0102-672020190001e1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acid inhibition from chronic proton pump inhibitor use and a possible increase in gastrin can lead to changes in the regulation of hydrochloric acid production. However, it has not known whether such chronic use changes the presence of gastrin, delta, and enterochromaffin-like cells in the stomach or the relationship between gastrin and delta cells. AIM To analyze the number of gastrin-producing gastrin cells, somatostatin-producing cells, and histamine-producing cells in patients who were chronic users of proton pump inhibitor, with or without related Helicobacter pylori infection. METHODS Biopsies from 105 patients, including 81 chronic proton pump inhibitor users (experimental group) and 24 controls, were processed immunohistochemically and subjected to counting of gastrin, delta, and enterochromaffin-like cells in high-magnification microscopic fields and in 10 glands. RESULTS Gastrin cell, delta cell, and enterochromaffin-like cells counts were similar across the groups and appeared to be unaffected by Helicobacter pylori infection. The ratio between gastrin cells and delta cells was higher in the chronic users of proton pump inhibitor group than in controls. CONCLUSION Chronic users of proton pump inhibitor does not affect gastrin cell, delta cell, and enterochromaffin-like cell counts significantly, but may alter the ratio between gastrin cells and delta cells.
Collapse
Affiliation(s)
- Silvia Maria Perrone Camilo
- Post-Graduate Program in Health Sciences, Clinical Hospital, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | - Élia Cláudia de Souza Almeida
- Post-Graduate Program in Health Sciences, Clinical Hospital, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | - Jacqueline Batista Sousa
- Post-Graduate Program in Health Sciences, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | | | | |
Collapse
|
6
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
7
|
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol Rev 2020; 100:573-602. [PMID: 31670611 PMCID: PMC7327232 DOI: 10.1152/physrev.00016.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.
Collapse
Affiliation(s)
- Amy C Engevik
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
8
|
Brito A, Habeych E, Silva-Zolezzi I, Galaffu N, Allen LH. Methods to assess vitamin B12 bioavailability and technologies to enhance its absorption. Nutr Rev 2019; 76:778-792. [PMID: 29931214 DOI: 10.1093/nutrit/nuy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vitamin B12 (B-12) deficiency is still relatively common in low-, medium-, and high-income countries, mainly because of dietary inadequacy and, to a lesser extent, malabsorption. This narrative review is based on a systematic search of evidence on methods to assess B-12 bioavailability and technologies to enhance its absorption. A total of 2523 scientific articles identified in PubMed and 1572 patents identified in Orbit Intelligence were prescreened. Among the reviewed methods, Schilling's test and/or its food-based version (using cobalamin-labeled egg yolk) were used for decades but have been discontinued, largely because they required radioactive cobalt. The qualitative CobaSorb test, based on changes in circulating holo-transcobalamin before and after B-12 administration, and the 14C-labeled B-12 test for quantitative measurement of absorption of a low-dose radioactive tracer are currently the best available methods. Various forms of B-12 co-formulated with chemical enhancers (ie, salcaprozate sodium, 8-amino caprylate) or supplied via biotechnological methods (ie, microbiological techniques, plant cells expressing cobalamin binding proteins), encapsulation techniques (ie, emulsions, use of chitosan particles), and alternative routes of administration (ie, intranasal, transdermal administration) were identified as potential technologies to enhance B-12 absorption in humans. However, in most cases the evidence of absorption enhancement is limited.
Collapse
Affiliation(s)
- Alex Brito
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| |
Collapse
|
9
|
Arin RM, Gorostidi A, Navarro-Imaz H, Rueda Y, Fresnedo O, Ochoa B. Adenosine: Direct and Indirect Actions on Gastric Acid Secretion. Front Physiol 2017; 8:737. [PMID: 29018360 PMCID: PMC5614973 DOI: 10.3389/fphys.2017.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Composed by a molecule of adenine and a molecule of ribose, adenosine is a paradigm of recyclable nucleoside with a multiplicity of functions that occupies a privileged position in the metabolic and regulatory contexts. Adenosine is formed continuously in intracellular and extracellular locations of all tissues. Extracellular adenosine is a signaling molecule, able to modulate a vast range of physiologic responses in many cells and organs, including digestive organs. The adenosine A1, A2A, A2B, and A3 receptors are P1 purinergic receptors, G protein-coupled proteins implicated in tissue protection. This review is focused on gastric acid secretion, a process centered on the parietal cell of the stomach, which contains large amounts of H+/K+-ATPase, the proton pump responsible for proton extrusion during acid secretion. Gastric acid secretion is regulated by an extensive collection of neural stimuli and endocrine and paracrine agents, which act either directly at membrane receptors of the parietal cell or indirectly through other regulatory cells of the gastric mucosa, as well as mechanic and chemic stimuli. In this review, after briefly introducing these points, we condense the current body of knowledge about the modulating action of adenosine on the pathophysiology of gastric acid secretion and update its significance based on recent findings in gastric mucosa and parietal cells in humans and animal models.
Collapse
Affiliation(s)
- Rosa M Arin
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Adriana Gorostidi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Hiart Navarro-Imaz
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| |
Collapse
|
10
|
Solitary Gastric Carcinoid Tumor Associated with Long-Term Use of Omeprazole: A Case Report and Review of the Literature. Dig Dis Sci 2016; 61:708-12. [PMID: 26715503 DOI: 10.1007/s10620-015-4014-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022]
|
11
|
Hunt RH, Camilleri M, Crowe SE, El-Omar EM, Fox JG, Kuipers EJ, Malfertheiner P, McColl KEL, Pritchard DM, Rugge M, Sonnenberg A, Sugano K, Tack J. The stomach in health and disease. Gut 2015; 64:1650-68. [PMID: 26342014 PMCID: PMC4835810 DOI: 10.1136/gutjnl-2014-307595] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
The stomach is traditionally regarded as a hollow muscular sac that initiates the second phase of digestion. Yet this simple view ignores the fact that it is the most sophisticated endocrine organ with unique physiology, biochemistry, immunology and microbiology. All ingested materials, including our nutrition, have to negotiate this organ first, and as such, the stomach is arguably the most important segment within the GI tract. The unique biological function of gastric acid secretion not only initiates the digestive process but also acts as a first line of defence against food-borne microbes. Normal gastric physiology and morphology may be disrupted by Helicobacter pylori infection, the most common chronic bacterial infection in the world and the aetiological agent for most peptic ulcers and gastric cancer. In this state-of-the-art review, the most relevant new aspects of the stomach in health and disease are addressed. Topics include gastric physiology and the role of gastric dysmotility in dyspepsia and gastroparesis; the stomach in appetite control and obesity; there is an update on the immunology of the stomach and the emerging field of the gastric microbiome. H. pylori-induced gastritis and its associated diseases including peptic ulcers and gastric cancer are addressed together with advances in diagnosis. The conclusions provide a future approach to gastric diseases underpinned by the concept that a healthy stomach is the gateway to a healthy and balanced host. This philosophy should reinforce any public health efforts designed to eradicate major gastric diseases, including stomach cancer.
Collapse
Affiliation(s)
- R H Hunt
- Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - M Camilleri
- Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - S E Crowe
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - E M El-Omar
- Division of Applied Medicine, Aberdeen University, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | - J G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - E J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - P Malfertheiner
- Klinik für Gastroenterologie, Hepatologie und Infektiologi Universitätsklinikum Magdeburg A.ö.R.Leipziger Str. 44, Magdeburg, Germany
| | - K E L McColl
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - D M Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Rugge
- Department of Medicine DIMED, Pathology & Cytopathology Unit, University of Padova, Padova, Italy
| | - A Sonnenberg
- Department of Gastroenterology, Oregon Health Science University, Portland, Oregon, USA
| | - K Sugano
- Department of Internal Medicine, Jichi Medical School, Shimotsuke, Japan
| | - J Tack
- Translational Research in GastroIntestinal Disorders, Leuven, Belgium
| |
Collapse
|
12
|
Mignon-Grasteau S, Rideau N, Gabriel I, Chantry-Darmon C, Boscher MY, Sellier N, Chabault M, Le Bihan-Duval E, Narcy A. Detection of QTL controlling feed efficiency and excretion in chickens fed a wheat-based diet. Genet Sel Evol 2015; 47:74. [PMID: 26407557 PMCID: PMC4582934 DOI: 10.1186/s12711-015-0156-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
Background Improving feed efficiency is a major goal in poultry production in order to reduce production costs, increase the possibility of using alternative feedstuffs and decrease the volume of manure. However, in spite of their economic and environmental impact, very few quantitative trait loci (QTL) have been reported on these traits. Thus, we undertook the detection of QTL on 820 meat-type chickens from a F2 cross between D− and D+ lines that were divergently selected on low or high digestive efficiency at 3 weeks of age. Birds were measured for growth between 0 and 23 days, feed intake and feed conversion ratio between 9 and 23 days, breast and abdominal fat yields at 23 days, and the anatomy of their digestive tract (density, relative weight and length of the duodenum, jejunum, ileum, and ratio of proventriculus to gizzard weight) was examined. To evaluate excretion traits, fresh and dry weight, water content, pH, nitrogen to phosphorus ratio from 0 to 23 days, and pH of gizzard and jejunum contents at 23 days were measured. A set of 3379 single nucleotide polymorphisms distributed on 28 Gallus gallus (GGA) autosomes, the Z chromosome and one unassigned linkage group was used for QTL detection. Results Using the QTLMap software developed for linkage analyses by interval mapping, we detected 16 QTL for feed intake, 13 for feed efficiency, 49 for anatomy-related traits, seven for growth, six for body composition and ten for excretion. Nine of these QTL were genome-wide significant (four for feed intake on GGA1, one for feed efficiency on GGA2, and four for anatomy on GGA1, 2, 3 and 4). GGA16, 19, and 26 carried many QTL for different types of traits that co-localize at the same position. Conclusions This study identified several QTL regions that are involved in the control of digestive efficiency in chicken. Further studies are needed to identify the genes that underlie these effects, and to validate these in other commercial populations and for different breeding environments. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0156-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Nicole Rideau
- INRA, UR83 Recherches Avicoles, 37380, Nouzilly, France.
| | - Irène Gabriel
- INRA, UR83 Recherches Avicoles, 37380, Nouzilly, France.
| | | | | | | | - Marie Chabault
- INRA, UR83 Recherches Avicoles, 37380, Nouzilly, France.
| | | | - Agnès Narcy
- INRA, UR83 Recherches Avicoles, 37380, Nouzilly, France.
| |
Collapse
|
13
|
|
14
|
Márquez L, Fuentes J. In vitro characterization of acid secretion in the gilthead sea bream (Sparus aurata) stomach. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:52-8. [PMID: 24126049 DOI: 10.1016/j.cbpa.2013.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 01/19/2023]
Abstract
The gastric acid secretion of juvenile Sparus aurata was characterized in Ussing chambers; secretion rates were determined by a pH-stat method at pH5.50 and bioelectrical parameters were measured in current-clamped tissues. The basal secretion equaled to 535±87nmol·cm(-2)·h(-1). Serosal carbachol 100μM produced an increase (ΔJH(+)) of 725±133nmol·cm(-2)·h(-1) from basal secretion, this effect being inhibited by mucosal omeprazole 100μM. Basal secretion was also sensitive to the combination of serosal forskolin (FK) 10μM+serosal isobutylmethylxanthine (IBMX) 100μM (ΔJH(+)=793±239nmol·cm(-2)·h(-1)); this effect was insensitive to mucosal omeprazole 100mM but inhibited by mucosal bafilomycin A1 100nM. The effect of carbachol proceeded within a few minutes (<10min), whereas the effect of FK+IBMX was gradual, taking 40min to reach the maximum. The addition of mucosal gadolinium (Gd(3+)) 100μM, a potent calcium-sensing receptor (CaR) agonist, stimulated the basal secretion (ΔJH(+)=340±81nmol·cm(-2)·h(-1)). The present results indicate that the acid secretion mechanism in the sea bream stomach is regulated by muscarinic and CaR-like receptors, cAMP is implicated in the signal transduction, and at least two proton pumps, a HK-ATPase and a V-ATPase contribute to acid secretion.
Collapse
Affiliation(s)
- Lorenzo Márquez
- Núcleo de Investigación en Producción Alimentaria/Escuela de Acuicultura, Facultad de Recursos Naturales, Universidad Católica de Temuco, Avda. Rudecindo Ortega 02950, PO Box 15-D, Temuco, Chile.
| | | |
Collapse
|
15
|
Yang I, Nell S, Suerbaum S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol Rev 2013; 37:736-61. [DOI: 10.1111/1574-6976.12027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023] Open
|
16
|
Effect of Proton Pump Inhibitors on the Secretion of Bicarbonates and Pepsinogen Induced by Chemical Stimulation of the Gastric Mucosa. Bull Exp Biol Med 2013; 154:415-8. [DOI: 10.1007/s10517-013-1964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cohen L, Asraf H, Sekler I, Hershfinkel M. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39). J Biol Chem 2012; 287:33339-50. [PMID: 22879599 DOI: 10.1074/jbc.m112.372441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.
Collapse
Affiliation(s)
- Limor Cohen
- Department of Morphology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
18
|
Amino acid sensing in the gastrointestinal tract. Amino Acids 2012; 45:451-61. [DOI: 10.1007/s00726-012-1371-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/14/2012] [Indexed: 12/24/2022]
|
19
|
Bitziou E, Patel BA. Simultaneous detection of gastric acid and histamine release to unravel the regulation of acid secretion from the guinea pig stomach. Am J Physiol Gastrointest Liver Physiol 2012; 303:G396-403. [PMID: 22595991 DOI: 10.1152/ajpgi.00548.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric acid secretion is regulated by three primary components that activate the parietal cell: histamine, gastrin, and acetylcholine (ACh). Although much is known about these regulatory components individually, little is known on the interplay of these multiple activators and the degree of regulation they pose on the gastric acid secretion mechanism. We utilized a novel dual-sensing approach, where an iridium oxide sensor was used to monitor pH and a boron-doped diamond electrode was used for the detection of histamine from in vitro guinea pig stomach mucosal sections. Under basal conditions, gastrin was shown to be the main regulatory component of the total acid secretion and directly activated the parietal cell rather than by mediating gastric acid secretion through the release of histamine from the enterochromaffin-like cell, although both pathways were active. Under stimulated conditions with ACh, the gastrin and histamine components of the total acid secretion were not altered compared with levels observed under basal conditions, suggestive that ACh had no direct effect on the enterochromaffin-like cell and G cell. These data identify a new unique approach to investigate the regulation pathways active during acid secretion and the degree that they are utilized to drive total gastric acid secretion. The findings of this study will enhance our understanding on how these signaling mechanisms vary under pathophysiology or therapeutic management.
Collapse
Affiliation(s)
- Eleni Bitziou
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
20
|
Abstract
The duodenal mucosa is exposed to endogenous and exogenous chemicals, including acid, CO(2), bile acids and nutrients. Mucosal chemical sensors are necessary to exert physiological responses such as secretion, digestion, absorption, and motility. We propose a mucosal chemosensing system by which luminal chemicals are sensed via mucosal acid sensors and G-protein-coupled receptors. Luminal acid/CO(2) sensing consists of ecto- and cytosolic carbonic anhydrases, epithelial ion transporters, and acid sensors expressed on the afferent nerves in the duodenum. Furthermore, a luminal L-glutamate signal is mediated via mucosal L-glutamate receptors, including metabotropic glutamate receptors and taste receptor 1 family heterodimers, with activation of afferent nerves and cyclooxygenase, whereas luminal Ca(2+) is differently sensed via the calcium-sensing receptor in the duodenum. Recent studies also show the involvement of enteroendocrine G-protein-coupled receptors in bile acid and fatty acid sensing in the duodenum. These luminal chemosensors help activate mucosal defense mechanisms in or- der to maintain the mucosal integrity and physiological responses. Stimulation of luminal chemosensing in the duodenal mucosa may prevent mucosal injury, affect nutrient metabolism, and modulate sensory nerve activity.
Collapse
Affiliation(s)
- Yasutada Akiba
- *Yasutada Akiba, MD, PhD, Bldg 114, Suite 217, West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA 90073 (USA), Tel. +1 310 478 3711, Fax +1 310 268 4811, E-Mail
| | | |
Collapse
|