1
|
Shen NN, Wang JL, Fu YP. The microRNA Expression Profiling in Heart Failure: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:856358. [PMID: 35783849 PMCID: PMC9240229 DOI: 10.3389/fcvm.2022.856358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Background Heart failure (HF) is a main consequence of cardiovascular diseases worldwide. Abnormal expression levels of microRNAs (miRNAs) in HF are observed in current studies. Novel biomarkers miRNAs may play an important role in the development of HF. Nevertheless, the inconsistency of miRNA expression limits the clinical application. We thus perform this systematic review of the miRNAs expression profiling to identify potential HF biomarkers. Methods The electronic databases of Embase, Medline, and Cochrane Library were systematically searched to identify the miRNA expression profiles between HF subjects and non-HF controls before May 26th, 2021. The pooled results were shown as log10 odds ratios (logORs) with 95% confidence intervals (CI) using random-effect models. Subgroup analyses were conducted according to species, region, and sample source. The quality assessment of included studies was independently conducted based on Diagnostic Accuracy Study 2 (QUADAS-2). The sensitivity analysis was conducted based on sample size. Results A total of 55 miRNA expression articles reporting 276 miRNAs of HF were included. 47 consistently up-regulated and 10 down-regulated miRNAs were identified in the overall analysis, with the most up-regulated miR-21 (logOR 8.02; 95% CI: 6.76–9.27, P < 0.001) and the most down-regulated miR-30c (logOR 6.62; 95% CI: 3.04–10.20, P < 0.001). The subgroup analysis of sample source identified 35 up-regulated and 10 down-regulated miRNAs in blood sample, the most up-regulated and down-regulated miRNAs were miR-210-3p and miR-30c, respectively. In the region sub-groups, let-7i-5p and miR-129 were most up-regulated and down-regulated in Asian countries, while in non-Asian countries, let-7e-5p and miR-30c were the most dysregulated. It’s worth noting that miR-622 was consistently up-regulated in both Asian and non-Asian countries. Sensitivity analysis showed that 46 out of 58 (79.31%) miRNAs were dysregulated. Conclusion A total of 57 consistently dysregulated miRNAs related to HF were confirmed in this study. Seven dysregulated miRNAs (miR-21, miR-30c, miR-210-3p, let-7i-5p, miR-129, let-7e-5p, and miR-622) may be considered as potential non-invasive biomarkers for HF. However, further validation in larger-scale studies are needed to verify our conclusions.
Collapse
Affiliation(s)
- Nan-Nan Shen
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jia-Liang Wang
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
- *Correspondence: Jia-Liang Wang,
| | - Yong-ping Fu
- Department of Cardiology, Affiliated Hospital of Shaoxing University, Shaoxing, China
- Yong-ping Fu,
| |
Collapse
|
2
|
Odiba A, Ottah V, Anunobi O, Ukegbu C, Uroko R, Ottah C, Edeke A, Omeje K. Current strides in AAV-derived vectors and SIN channels further relieves the limitations of gene therapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Pritchard TJ, Kawase Y, Haghighi K, Anjak A, Cai W, Jiang M, Nicolaou P, Pylar G, Karakikes I, Rapti K, Rubinstein J, Hajjar RJ, Kranias EG. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts. PLoS One 2013; 8:e80717. [PMID: 24312496 PMCID: PMC3846572 DOI: 10.1371/journal.pone.0080717] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/16/2013] [Indexed: 01/14/2023] Open
Abstract
Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.
Collapse
Affiliation(s)
- Tracy J. Pritchard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yoshiaki Kawase
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Ahmad Anjak
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Wenfeng Cai
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Min Jiang
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Persoulla Nicolaou
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - George Pylar
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Ioannis Karakikes
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kleopatra Rapti
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Roger J. Hajjar
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Evangelia G. Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
4
|
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5:1642-61. [PMID: 24106209 PMCID: PMC3840483 DOI: 10.1002/emmm.201202287] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023] Open
Abstract
The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders.
Collapse
Affiliation(s)
| | - Hildegard Büning
- Department I of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of CologneCologne, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical SchoolHannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical SchoolBoston, MA, USA
| | - Manuel Grez
- Institute for Biomedical ResearchGeorg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|
5
|
Zhu X, Wang H, Liu F, Chen L, Luo W, Su P, Li W, Yu L, Yang X, Cai J. Identification of micro-RNA networks in end-stage heart failure because of dilated cardiomyopathy. J Cell Mol Med 2013; 17:1173-87. [PMID: 23998897 PMCID: PMC4118176 DOI: 10.1111/jcmm.12096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023] Open
Abstract
Micro-RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end-stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal-Network, miRNA-GO-Network and miRNA-Gene-Network. According to the fold change in the network and probability values in the microarray cohort, RT-PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR-340 achieved statistically significant. miR-340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR-340 in cultured neonatal rat cardiomyocytes to identify whether miR-340 plays a determining role in the progression of heart failure. ANP, BNP and caspase-3 were significantly elevated in the miR-340 transfected cells compared with controls (P < 0.05). The cross-sectional area of overexpressing miR-340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end-stage heart failure and identified miR-340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lipskaia L, Hadri L, Lopez JJ, Hajjar RJ, Bobe R. Benefit of SERCA2a gene transfer to vascular endothelial and smooth muscle cells: a new aspect in therapy of cardiovascular diseases. Curr Vasc Pharmacol 2013; 11:465-79. [PMID: 23905641 PMCID: PMC6019278 DOI: 10.2174/1570161111311040010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 01/16/2023]
Abstract
Despite the great progress in cardiovascular health and clinical care along with marked decline in morbidity and mortality, cardiovascular diseases remain the leading causes of death and disability in the developed world. New therapeutic approaches, targeting not only systematic but also causal dysfunction, are ultimately needed to provide a valuable alternative for treatment of complex cardiovascular diseases. In heart failure, there are currently a number of trials that have been either completed or are ongoing targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) gene transfer in the context of heart failure. Recently, a phase 2 trial was completed, demonstrating safety and suggested benefit of adeno-associated virus type 1/SERCA2a gene transfer in advanced heart failure, supporting larger confirmatory trials. The experimental and clinical data suggest that, when administrated through perfusion, virus vector carrying SERCA2a can also transduce vascular endothelial and smooth muscle cells (EC and SMC) thereby improving the clinical benefit of gene therapy. Indeed, recent advances in understanding the molecular basis of vascular dysfunction point towards a reduction of sarcoplasmic reticulum Ca2+ uptake and an impairment of Ca2+ cycling in vascular EC and SMC from patients and preclinical models with cardiac diseases or with cardiovascular risk factors such as diabetes, hypercholesterolemia, coronary artery diseases, as well as other conditions such as pulmonary hypertension. In recent years, several studies have established that SERCA2a gene-based therapy could be an efficient option to treat vascular dysfunction. This review focuses on the recent finding showing the beneficial effects of SERCA2a gene transfer in vascular EC and SMC.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Mount Sinai School of Medicine, Department of Cardiology, New York, NY 10029-6574, USA
| | - Lahouaria Hadri
- Mount Sinai School of Medicine, Department of Cardiology, New York, NY 10029-6574, USA
| | - Jose J. Lopez
- INSERM U770, CHU Bicêtre, Le Kremlin-Bicêtre, 94276, France
| | - Roger J. Hajjar
- Mount Sinai School of Medicine, Department of Cardiology, New York, NY 10029-6574, USA
| | - Regis Bobe
- INSERM U770, CHU Bicêtre, Le Kremlin-Bicêtre, 94276, France
| |
Collapse
|
7
|
Pan X, Yue Y, Zhang K, Lostal W, Shin JH, Duan D. Long-term robust myocardial transduction of the dog heart from a peripheral vein by adeno-associated virus serotype-8. Hum Gene Ther 2013; 24:584-94. [PMID: 23551085 PMCID: PMC3689160 DOI: 10.1089/hum.2013.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022] Open
Abstract
Molecular intervention using noninvasive myocardial gene transfer holds great promise for treating heart diseases. Robust cardiac transduction from peripheral vein injection has been achieved in rodents using adeno-associated virus (AAV) serotype-9 (AAV-9). However, a similar approach has failed to transduce the heart in dogs, a commonly used large animal model for heart diseases. To develop an effective noninvasive method to deliver exogenous genes to the dog heart, we employed an AAV-8 vector that expresses human placental alkaline phosphatase reporter gene under the transcriptional regulation of the Rous sarcoma virus promoter. Vectors were delivered to three neonatal dogs at the doses of 1.35×10(14), 7.14×10(14), and 9.06×10(14) viral genome particles/kg body weight via the jugular vein. Transduction efficiency and overall safety were evaluated at 1.5, 2.5, and 12 months postinjection. AAV delivery was well tolerated and dog growth was normal. Blood chemistry and internal organ histology were unremarkable. Widespread skeletal muscle transduction was observed in all dogs without T-cell infiltration. Encouragingly, whole heart myocardial transduction was achieved in two dogs that received higher doses and cardiac expression lasted for at least 1 year. In summary, peripheral vein AAV-8 injection may represent a simple heart gene transfer method in large mammals. Further optimization of this gene delivery strategy may open the door for a readily applicable gene therapy method to treat many heart diseases.
Collapse
Affiliation(s)
- Xiufang Pan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO 65212
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO 65212
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO 65212
| | - William Lostal
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO 65212
- Current address: Génethon, 91002 Evry Cedex, France
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO 65212
- Current address: Pusan National University Yangsan Hospital, Yangsan 626-770, Republic of Korea
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO 65212
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212
| |
Collapse
|
8
|
Distefano G, Sciacca P. Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure. Ital J Pediatr 2012; 38:41. [PMID: 22971785 PMCID: PMC3480957 DOI: 10.1186/1824-7288-38-41] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/26/2012] [Indexed: 11/14/2022] Open
Abstract
It is well known that the natural history of chronic heart failure (CHF),regardless of age and aetiology,is characterized by progressive cardiac dysfunction refractory to conventional cardiokinetic, diuretic and peripheral vasodilator therapy. Several previous studies, both in animals and humans, showed that the key pathogenetic element of CHF negative clinical evolution is constituted by myocardial remodeling. This is a complex pathologic process of ultrastructural rearrangement of the heart induced by various neuro-humoral factors released by cardiac fibrocells in response to biomechanical stress connected to chronic haemodynamic overload. Typical features of myocardial remodeling are represented by cardiomyocytes hypertrophy and apoptosis, extracellular matrix alterations, mesenchymal fibrotic and phlogistic processes and by cardiac gene expression modifications with fetal genetic program reactivation. In the last years, increasing knowledge of subtle molecular and cellular mechanisms involved in myocardial remodeling has led to the discovery of some new potential therapeutic targets capable of inducing its regression. In this paper our attention is focused on the possible use of antiapoptotic and antifibrotic agents, and on the fascinating perspectives offered by the development of myocardial gene therapy and, in particular, by myocardial regenerative therapy.
Collapse
Affiliation(s)
- Giuseppe Distefano
- Department of Pediatrics, Pediatric Cardiology Service, University of Catania, Via S Sofia 78, Catania, 95123, Italy.
| | | |
Collapse
|
9
|
Robertson KE, McDonald RA, Oldroyd KG, Nicklin SA, Baker AH. Prevention of coronary in-stent restenosis and vein graft failure: does vascular gene therapy have a role? Pharmacol Ther 2012; 136:23-34. [PMID: 22796519 DOI: 10.1016/j.pharmthera.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/19/2022]
Abstract
Coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI), including stent insertion, are established therapies in both acute coronary syndromes (ACS) and symptomatic chronic coronary artery disease refractory to pharmacological therapy. These continually advancing treatments remain limited by failure of conduit grafts in CABG and by restenosis or thrombosis of stented vessel segments in PCI caused by neointimal hyperplasia, impaired endothelialisation and accelerated atherosclerosis. While pharmacological and technological advancements have improved patient outcomes following both procedures, when grafts or stents fail these result in significant health burdens. In this review we discuss the pathophysiology of vein graft disease and in-stent restenosis, gene therapy vector development and design, and translation from pre-clinical animal models through human clinical trials. We identify the key issues that are currently preventing vascular gene therapy from interfacing with clinical use and introduce the areas of research attempting to overcome these.
Collapse
Affiliation(s)
- Keith E Robertson
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
10
|
Piacentino III V, Milano CA, Bolanos M, Schroder J, Messina E, Cockrell AS, Jones E, Krol A, Bursac N, Mao L, Devi GR, Samulski RJ, Bowles DE. X-linked inhibitor of apoptosis protein-mediated attenuation of apoptosis, using a novel cardiac-enhanced adeno-associated viral vector. Hum Gene Ther 2012; 23:635-46. [PMID: 22339372 PMCID: PMC3392616 DOI: 10.1089/hum.2011.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 02/09/2012] [Indexed: 12/31/2022] Open
Abstract
Successful amelioration of cardiac dysfunction and heart failure through gene therapy approaches will require a transgene effective at attenuating myocardial injury, and subsequent remodeling, using an efficient and safe delivery vehicle. Our laboratory has established a well-curated, high-quality repository of human myocardial tissues that we use as a discovery engine to identify putative therapeutic transgene targets, as well as to better understand the molecular basis of human heart failure. By using this rare resource we were able to examine age- and sex-matched left ventricular samples from (1) end-stage failing human hearts and (2) nonfailing human hearts and were able to identify the X-linked inhibitor of apoptosis protein (XIAP) as a novel target for treating cardiac dysfunction. We demonstrate that XIAP is diminished in failing human hearts, indicating that this potent inhibitor of apoptosis may be central in protecting the human heart from cellular injury culminating in heart failure. Efforts to ameliorate heart failure through delivery of XIAP compelled the design of a novel adeno-associated viral (AAV) vector, termed SASTG, that achieves highly efficient transduction in mouse heart and in cultured neonatal rat cardiomyocytes. Increased XIAP expression achieved with the SASTG vector inhibits caspase-3/7 activity in neonatal cardiomyocytes after induction of apoptosis through three common cardiac stresses: protein kinase C-γ inhibition, hypoxia, or β-adrenergic receptor agonist. These studies demonstrate the potential benefit of XIAP to correct heart failure after highly efficient delivery to the heart with the rationally designed SASTG AAV vector.
Collapse
Affiliation(s)
- Valentino Piacentino III
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Carmelo A. Milano
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Michael Bolanos
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Jacob Schroder
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Emily Messina
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Adam S. Cockrell
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Edward Jones
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Ava Krol
- Department of Biomedical Engineering, Duke University, Durham, NC 27710
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27710
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Gayathri R. Devi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dawn E. Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|