1
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
2
|
Herbsleb M, Schumann A, Malchow B, Puta C, Schulze PC, Gabriel HW, Bär KJ. Chronotropic incompetence of the heart is associated with exercise intolerance in patients with schizophrenia. Schizophr Res 2018. [PMID: 29526454 DOI: 10.1016/j.schres.2018.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The elevated cardiovascular risk of patients with schizophrenia contributes to a reduced life expectancy of 15-20years. This study investigated whether cardiac autonomic dysfunction (CADF) in schizophrenia is related to chronotropic incompetence, an established cardiovascular risk marker. We investigated thirty-two patients suffering from paranoid schizophrenia and thirty-two control subjects matched for age, sex, body mass index and fat free mass. A cardiopulmonary exercise test (CPET) was performed to study heart rate responses to exercise as well as submaximal (ventilatory threshold 1, VT1) and maximal endurance capacities (peak oxygen consumption, VO2peak; peak power output, Ppeak). In addition, epinephrine and norepinephrine levels were assessed in a subset of patients. Fitness parameters were significantly reduced in all patients. Most investigated physiological parameters were significantly different at rest as well as during peak exercise being in line with previously described CADF in schizophrenia. In particular, 14 out of 32 patients were classified as chronotropically incompetent whereas no control subject was below the cut-off value. In addition, a positive correlation of a slope reflecting chronotropic incompetence with peak oxygen uptake (p<0.001) was observed in patients only indicating a close correlation to the lack of physical fitness. The catecholamine increase was reduced in patients after exercise. This study identified a novel cardiac risk factor in patients with schizophrenia. Moreover, it seems to be associated with reduced physical fitness and indicates targets for exercise intervention studies. Future studies are warranted to elucidate pathophysiological mechanisms of this cardiac condition.
Collapse
Affiliation(s)
- Marco Herbsleb
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University of Jena, Germany
| | - Andy Schumann
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Germany
| | - Berend Malchow
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University of Jena, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Holger W Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University of Jena, Germany
| | - Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Germany.
| |
Collapse
|
3
|
Tubek S, Niewinski P, Reczuch K, Janczak D, Rucinski A, Paleczny B, Engelman ZJ, Banasiak W, Paton JFR, Ponikowski P. Effects of selective carotid body stimulation with adenosine in conscious humans. J Physiol 2016; 594:6225-6240. [PMID: 27435894 DOI: 10.1113/jp272109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS In humans, excitation of peripheral chemoreceptors with systemic hypoxia causes hyperventilation, hypertension and tachycardia. However, the contribution of particular chemosensory areas (carotid vs. aortic bodies) to this response is unclear. We showed that selective stimulation of the carotid body by the injection of adenosine into the carotid artery causes a dose-dependent increase in minute ventilation and blood pressure with a concomitant decrease in heart rate in conscious humans. The ventilatory response was abolished and the haemodynamic response was diminished following carotid body ablation. We found that the magnitude of adenosine evoked responses in minute ventilation and blood pressure was analogous to the responses evoked by hypoxia. By contrast, opposing heart rate responses were evoked by adenosine (bradycardia) vs. hypoxia (tachycardia). Intra-carotid adenosine administration may provide a novel method for perioperative assessment of the effectiveness of carotid body ablation, which has been recently proposed as a treatment strategy for sympathetically-mediated diseases. ABSTRACT Stimulation of peripheral chemoreceptors by acute hypoxia causes an increase in minute ventilation (VI), heart rate (HR) and arterial blood pressure (BP). However, the contribution of particular chemosensory areas, such as carotid (CB) vs. aortic bodies, to this response in humans remains unknown. We performed a blinded, randomized and placebo-controlled study in 11 conscious patients (nine men, two women) undergoing common carotid artery angiography. Doses of adenosine ranging from 4 to 512 μg or placebo solution of a matching volume were administered in randomized order via a diagnostic catheter located in a common carotid artery. Separately, ventilatory and haemodynamic responses to systemic hypoxia were also assessed. Direct excitation of a CB with intra-arterial adenosine increased VI, systolic BP, mean BP and decreased HR. No responses in these variables were seen after injections of placebo. The magnitude of the ventilatory and haemodynamic responses depended on both the dose of adenosine used and on the level of chemosensitivity as determined by the ventilatory response to hypoxia. Percutaneous radiofrequency ablation of the CB abolished the adenosine evoked respiratory response and partially depressed the cardiovascular response in one participant. The results of the present study confirm the excitatory role of purines in CB physiology in humans and suggest that adenosine may be used for selective stimulation and assessment of CB activity. The trial is registered at ClinicalTrials.gov NCT01939912.
Collapse
Affiliation(s)
- Stanislaw Tubek
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland. .,Department of Heart Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland.
| | - Piotr Niewinski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Krzysztof Reczuch
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular Surgery, 4th Military Hospital, Wroclaw, Poland.,Department of Clinical Proceedings, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Rucinski
- Department of Vascular Surgery, 4th Military Hospital, Wroclaw, Poland
| | | | | | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Piotr Ponikowski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Niewinski P. Carotid body modulation in systolic heart failure from the clinical perspective. J Physiol 2016; 595:53-61. [PMID: 26990354 DOI: 10.1113/jp271692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/10/2016] [Indexed: 01/30/2023] Open
Abstract
Augmented sensitivity of peripheral chemoreceptors (PChS) is a common finding in systolic heart failure (HF). It is related to lower left ventricle systolic function, higher plasma concentrations of natriuretic peptides, worse exercise tolerance and greater prevalence of atrial fibrillation compared to patients with normal PChS. The magnitude of ventilatory response to the activation of peripheral chemoreceptors is proportional to the level of heart rate (tachycardia) and blood pressure (hypertension) responses. All these responses can be measured non-invasively in a safe and reproducible fashion using different methods employing either hypoxia or hypercapnia. Current interventions aimed at modulation of peripheral chemoreceptors in HF are focused on carotid bodies (CBs). There is a clear link between afferent signalling from CBs and sympathetic overactivity, which remains the priority target of modern HF treatment. However, CB modulation therapies may face several potential obstacles: (1) As evidenced by HF trials, an excessive inhibition of sympathetic system may be harmful. (2) Proximity of critical anatomical structures (important vessels and nerves) makes surgical and transcutaneous interventions on CB technically demanding. (3) Co-existence of atherosclerosis in the area of carotid artery bifurcation increases the risk of central embolic events related to CB modulation. (4) The relative contribution of CBs vs. aortic bodies to sympathetic activation in HF patients is unclear. (5) Choosing optimal candidates for CB modulation from the population of HF patients may be problematic. (6) There is a risk of nocturnal hypoxia following CB ablation - mostly after bilateral procedures and in patients with concomitant obstructive sleep apnoea.
Collapse
Affiliation(s)
- Piotr Niewinski
- Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| |
Collapse
|
5
|
Role of the Carotid Body Chemoreflex in the Pathophysiology of Heart Failure: A Perspective from Animal Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:167-85. [PMID: 26303479 DOI: 10.1007/978-3-319-18440-1_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment and management of chronic heart failure (CHF) remains an important focus for new and more effective clinical strategies. This important goal, however, is dependent upon advancing our understanding of the underlying pathophysiology. In CHF, sympathetic overactivity plays an important role in the development and progression of the cardiac and renal dysfunction and is often associated with breathing dysregulation, which in turn likely mediates or aggravates the autonomic imbalance. In this review we will summarize evidence that in CHF, the elevation in sympathetic activity and breathing instability that ultimately lead to cardiac and renal failure are driven, at least in part, by maladaptive activation of the carotid body (CB) chemoreflex. This maladaptive change derives from a tonic increase in CB afferent activity. We will focus our discussion on an understanding of mechanisms that alter CB afferent activity in CHF and its consequence on reflex control of autonomic, respiratory, renal, and cardiac function in animal models of CHF. We will also discuss the potential translational impact of targeting the CB in the treatment of CHF in humans, with relevance to other cardio-respiratory diseases.
Collapse
|