1
|
Wardhani SO, Susianti H, Rahayu P, Yueniwati YP. Effects of the FOXO3a rs 4946936 Gene Polymorphism on the FOXO3a Transcription Factor in Chronic Granulocytic Leukemia Patients. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction : FOXO3a has an important role in the maintenance of leukemic stem cells. BCR-ABL inhibition therapy by TKI dasatinib aims to reduce the phosphorylation of the transcription factor FOXO3a, promote localization of FOXO3a in the nucleus and restore transcriptional activity. However, some studies showed that the TKI dasatinib, in addition to increase the relocation of Foxo3a to the intranuclear, also increase the expression of CDKN1c/p57 and Bcl6 genes that became the down target for Foxo3a intra nucleus ATM. Therefore, current therapy is mostly directed at personalized therapy (personalized medicine). The aim of this study was to investigate the effect of the FOXO3a rs4946936 gene polymorphism on the Foxo3a transcription factor in chronic granulocytic leukemia patients treated with Imatinib mesylate.
Method : This is a cross-sectional study in patients with chronic granulocytic leukemia (CGL) with positive Bcr-ABL. The aim was to prove the effect of the FOXO3a gene polymorphism rs4946936 on the Foxo3a transcription factor. The data analysis test used was a correlation test and a regression test.
Result : There were three polymorphisms of the FOXO3a gene, namely CC polymorphism, TC polymorphism, and TT polymorphism with a p-value of 0.026 and an r of 0.287, so it can be concluded that there was a significant correlation between the FOXO3a gene polymorphism and the Foxo3an transcription factor with a sufficient correlation value. In the regression test between the FOXO3a gene polymorphisms and the transcription factor FOXO3a, the p value was 0.029 and the B value was -0.294. This means that it has a negative and significant effect on the Foxo3a transcription factor variable.
Conclusion : There was a significant correlation between the gene polymorphism FOXO3a rs4946936 and the transcription factor FOX3a. The FOXO3a gene polymorphism of the TT genotype had a negative effect on the FOXO3a transcription factor. The TT gene in the FOXO3a gene polymorphism was the most effective in reducing the FOXO3a transcription factor.
Collapse
|
2
|
Galimberti S, Grassi S, Baratè C, Guerrini F, Ciabatti E, Perutelli F, Ricci F, Del Genio G, Montali M, Barachini S, Giuliani C, Ferreri MI, Valetto A, Abruzzese E, Ippolito C, Iurlo A, Bocchia M, Sicuranza A, Martino B, Iovino L, Buda G, Salehzadeh S, Petrini M, Di Paolo A, Mattii L. The Polycomb BMI1 Protein Is Co-expressed With CD26+ in Leukemic Stem Cells of Chronic Myeloid Leukemia. Front Oncol 2018; 8:555. [PMID: 30574454 PMCID: PMC6291509 DOI: 10.3389/fonc.2018.00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 11/24/2022] Open
Abstract
The Polycomb gene BMI1 expression exerts a negative predictive impact on several hematological malignancies, such as acute and chronic myeloid leukemia (CML), myelofibrosis, and follicular lymphoma. As already demonstrated in CML, BMI1 is responsible for the resistance to the tyrosine kinase inhibitors (TKIs) in a BCR-ABL1-independent way. Even if, it is unknown where BMI1 in CML is expressed (in progenitors or more mature cells). We decided, therefore, to evaluate if and where the BMI1 protein is located, focusing mainly on the CD34+/CD38-/CD26+ CML progenitors. To begin we measured, by flow cytometry, the proportion of CD34+/CD26+ cells in 31 bone marrow samples from 20 CML patients, at diagnosis and during treatment with imatinib. After that the bone marrow blood smears were stained with antibodies anti-CD26, BCR-ABL1, and BMI1. These smears were observed by a confocal laser microscope and a 3D reconstruction was then performed. At diagnosis, CD34+/CD26+ cells median value/μL was 0.48; this number increased from diagnosis to the third month of therapy and then reduced during treatment with imatinib. The number and behavior of the CD26+ progenitors were independent from the BCR-ABL1 expression, but they summed up what previously observed about the BMI1 expression modulation. In this work we demonstrate for the first time that in CML the BMI1 protein is co-expressed with BCR-ABL1 only in the cytoplasm of the CD26+ precursors; on the contrary, in other hematological malignancies where BMI1 is commonly expressed (follicular lymphoma, essential thrombocytemia, acute myeloid leukemia), it was not co-localized with CD26 or, obviously, with BCR-ABL1. Once translated into the clinical context, if BMI1 is a marker of stemness, our results would suggest the combination of the BMI1 inhibitors with TKIs as an interesting object of research, and, probably, as a promising way to overcome resistance in CML patients.
Collapse
Affiliation(s)
- Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Susanna Grassi
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GeNOMEC School of Doctorate, University of Siena, Siena, Italy
| | - Claudia Baratè
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Guerrini
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Ciabatti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Perutelli
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Ricci
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giada Del Genio
- Unità Operativa Cytogenetics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Marina Montali
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cecilia Giuliani
- Unità Operativa Cytogenetics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | - Angelo Valetto
- Unità Operativa Cytogenetics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | - Chiara Ippolito
- Section of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Bocchia
- Unità Operativa Ematologia, Università di Siena, Siena, Italy
| | - Anna Sicuranza
- Unità Operativa Ematologia, Università di Siena, Siena, Italy
| | - Bruno Martino
- Unità Operativa Ematologia, Ospedale Binco, Melacrino, Morelli, Reggio Calabria, Italy
| | - Lorenzo Iovino
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Buda
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Serena Salehzadeh
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonello Di Paolo
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Letizia Mattii
- Section of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Inoue A, Kobayashi CI, Shinohara H, Miyamoto K, Yamauchi N, Yuda J, Akao Y, Minami Y. Chronic myeloid leukemia stem cells and molecular target therapies for overcoming resistance and disease persistence. Int J Hematol 2018; 108:365-370. [DOI: 10.1007/s12185-018-2519-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
|
4
|
Scott MT, Korfi K, Saffrey P, Hopcroft LEM, Kinstrie R, Pellicano F, Guenther C, Gallipoli P, Cruz M, Dunn K, Jorgensen HG, Cassels JE, Hamilton A, Crossan A, Sinclair A, Holyoake TL, Vetrie D. Epigenetic Reprogramming Sensitizes CML Stem Cells to Combined EZH2 and Tyrosine Kinase Inhibition. Cancer Discov 2016; 6:1248-1257. [PMID: 27630125 DOI: 10.1158/2159-8290.cd-16-0263] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/04/2016] [Indexed: 01/23/2023]
Abstract
A major obstacle to curing chronic myeloid leukemia (CML) is residual disease maintained by tyrosine kinase inhibitor (TKI)-persistent leukemic stem cells (LSC). These are BCR-ABL1 kinase independent, refractory to apoptosis, and serve as a reservoir to drive relapse or TKI resistance. We demonstrate that Polycomb Repressive Complex 2 is misregulated in chronic phase CML LSCs. This is associated with extensive reprogramming of H3K27me3 targets in LSCs, thus sensitizing them to apoptosis upon treatment with an EZH2-specific inhibitor (EZH2i). EZH2i does not impair normal hematopoietic stem cell survival. Strikingly, treatment of primary CML cells with either EZH2i or TKI alone caused significant upregulation of H3K27me3 targets, and combined treatment further potentiated these effects and resulted in significant loss of LSCs compared to TKI alone, in vitro, and in long-term bone marrow murine xenografts. Our findings point to a promising epigenetic-based therapeutic strategy to more effectively target LSCs in patients with CML receiving TKIs. SIGNIFICANCE In CML, TKI-persistent LSCs remain an obstacle to cure, and approaches to eradicate them remain a significant unmet clinical need. We demonstrate that EZH2 and H3K27me3 reprogramming is important for LSC survival, but renders LSCs sensitive to the combined effects of EZH2i and TKI. This represents a novel approach to more effectively target LSCs in patients receiving TKI treatment. Cancer Discov; 6(11); 1248-57. ©2016 AACR.See related article by Xie et al., p. 1237This article is highlighted in the In This Issue feature, p. 1197.
Collapse
Affiliation(s)
- Mary T Scott
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Koorosh Korfi
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Saffrey
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lisa E M Hopcroft
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ross Kinstrie
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francesca Pellicano
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carla Guenther
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paolo Gallipoli
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michelle Cruz
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Heather G Jorgensen
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer E Cassels
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ashley Hamilton
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Crossan
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amy Sinclair
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - David Vetrie
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
5
|
Zhu X, Zhao H, Lin Z, Zhang G. Functional studies of miR-130a on the inhibitory pathways of apoptosis in patients with chronic myeloid leukemia. Cancer Gene Ther 2015; 22:573-80. [PMID: 26494558 DOI: 10.1038/cgt.2015.50] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023]
Abstract
The p53 mutation in chronic myeloid leukemia (CML) led to decreased overall survival and therapy resistance which was also closely correlated with the downstream proto-oncogenes BCL-2, TCL-1 and MCL-1. We in this study aimed to investigate the function of miR130a in p53 tumor suppressor signaling pathway. We performed microRNA (miRNA) expression profile analysis in CML cancer stem cells of 38 cases and extracted total RNA from peripheral blood of 143 cases. Standard curves of U6 and miRNA were made from 10-fold serial dilutions of the cDNA, which were quantified using real-time quantitative PCR with SYBR Green by ABI 7300. The p53 mutations and BCR/ABL mutation status analysis in CML patients were detected by PCR and direct sequencing. Candidate targets of miR130a of putative relevance in CML pathogenesis were analyzed by bioinformatics approach. We then used dual-luciferase activity assay to verify the target genes of miR130a and used western blot analysis to elucidate the mechanism of miR130a on modulating drug resistance. The levels of miR-130a expression in CML were significantly lower in poor prognostic subgroups, defined by prognostic factors including mutated BCR/ABL status, p53 and ATM deletions and p53 mutations. Furthermore, underexpression of miR-130a was significantly associated with shorter overall survival and treatment-free survival in CML patients. We demonstrated that miR130a function as tumor suppressors by inhibiting multiple anti-apoptosis proteins, including BCL-2, MCL-1 and XIAP. This was a direct effect because miR130a negatively regulated expression of a BCL-2/MCL-1/XIAP 3'untranslated region-based reporter construct. Transfection of miR130a mimics into CML cells from 30 patients without p53 aberrations led to significant increases in apoptosis compared with transfection with the miRNA control. Besides, enforced expression of miR130a had no significant drug-sensitization effect in CML cells from p53-attenuated patients. MiR-130a may have an important role in the pathogenesis of CML and may be useful for assessing prognosis in patients with CML. Moreover, miR130a may provide a possible therapeutic avenue and a sensitive indicator of the activity of the p53 in CML.
Collapse
MESH Headings
- Apoptosis
- Ataxia Telangiectasia Mutated Proteins/genetics
- Female
- Fusion Proteins, bcr-abl
- Gene Expression
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Mutation
- Prognosis
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- X Zhu
- Cancer Center, Beijing Shijitan Hospital, Capital Medical Hospital, Beijing, China
| | - H Zhao
- Clinical Department, Capital Medical University, Beijing, China
| | - Z Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Guangdong, China
| | - G Zhang
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Ciccone M, Calin GA. MicroRNAs in Myeloid Hematological Malignancies. Curr Genomics 2015; 16:336-48. [PMID: 27047254 PMCID: PMC4763972 DOI: 10.2174/138920291605150710122815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are 19-24 nucleotides noncoding RNAs which silence modulate the expression of target genes by binding to the messenger RNAs. Myeloid malignancies include a broad spectrum of acute and chronic disorders originating from from the clonal transformation of a hematopoietic stem cell. Specific genetic abnormalities may define myeloid malignancies, such as translocation t(9;22) that represent the hallmark of chronic myeloid leukemia. Although next-generation sequencing pro-vided new insights in the genetic characterization and pathogenesis of myeloid neoplasms, the molecular mechanisms underlying myeloid neoplasms are lacking in most cases. Recently, several studies have demonstrated that the expression levels of specific miRNAs may vary among patients with myeloid malignancies compared with healthy individuals and partially unveiled how miRNAs participate in the leukemic transformation process. Finally, in vitro experiments and pre-clinical model provided preliminary data of the safety and efficacy of miRNA inhibitory molecules, opening new avenue in the treatment of myeloid hematological malignancies.
Collapse
Affiliation(s)
- Maria Ciccone
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Ciccone M, Calin GA, Perrotti D. From the Biology of PP2A to the PADs for Therapy of Hematologic Malignancies. Front Oncol 2015; 5:21. [PMID: 25763353 PMCID: PMC4329809 DOI: 10.3389/fonc.2015.00021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/16/2015] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, an emerging role of phosphatases in the pathogenesis of hematologic malignancies and solid tumors has been established. The tumor-suppressor protein phosphatase 2A (PP2A) belongs to the serine-threonine phosphatases family and accounts for the majority of serine-threonine phosphatase activity in eukaryotic cells. Numerous studies have shown that inhibition of PP2A expression and/or function may contribute to leukemogenesis in several hematological malignancies. Likewise, overexpression or aberrant expression of physiologic PP2A inhibitory molecules (e.g., SET and its associated SETBP1 and CIP2A) may turn off PP2A function and participate to leukemic progression. The discovery of PP2A as tumor suppressor has prompted the evaluation of the safety and the efficacy of new compounds, which can restore PP2A activity in leukemic cells. Although further studies are needed to better understand how PP2A acts in the intricate phosphatases/kinases cancer network, the results reviewed herein strongly support the development on new PP2A-activating drugs and the immediate introduction of those available into clinical protocols for leukemia patients refractory or resistant to current available therapies.
Collapse
Affiliation(s)
- Maria Ciccone
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas , Houston, TX , USA
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas , Houston, TX , USA
| | - Danilo Perrotti
- Department of Medicine, The Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
8
|
Abstract
The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(-/-) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABL(p210+) LSCs. Transplantation with BCR-ABL(p210+)-infected bone marrow from Cdk6(-/-) mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6(-/-) BCR-ABL(p210+) LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs.
Collapse
|
9
|
Abstract
The BCR-ABL1 oncoprotein is the cause of chronic myeloid leukemia and occurs as a consequence of the translocation t(9;22), a well-defined genetic event that results in the formation of the Philadelphia chromosome. While this genomic aberration is recognized to be the main culprit of the chronic phase of chronic myeloid leukemia, the natural clonal evolution of this myeloproliferative neoplasm involves the accumulation of secondary alterations through genomic instability. Thus, efforts to dissect the frequency and nature of the genomic events at diagnosis and at later stages are producing valuable insights into understanding the mechanisms of blastic transformation and development of resistance in chronic myeloid leukemia. The identification of alternative BCR-ABL1-dependent and BCR-ABL1-independent targets that sustain the survival of leukemic blasts and/or leukemia-initiating cells will facilitate the development of novel viable therapeutic options for patients who become resistant or intolerant to the currently available therapeutic options based on tyrosine kinase inhibitors.
Collapse
|
10
|
Prick J, de Haan G, Green AR, Kent DG. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. Exp Hematol 2014; 42:841-51. [PMID: 25201757 DOI: 10.1016/j.exphem.2014.07.268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals.
Collapse
Affiliation(s)
- Janine Prick
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony R Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David G Kent
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
11
|
Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, Ferenchak G, Dorrance AM, Paisie CA, Eiring AM, Ma Y, Mao HC, Zhang B, Wunderlich M, May PC, Sun C, Saddoughi SA, Bielawski J, Blum W, Klisovic RB, Solt JA, Byrd JC, Volinia S, Cortes J, Huettner CS, Koschmieder S, Holyoake TL, Devine S, Caligiuri MA, Croce CM, Garzon R, Ogretmen B, Arlinghaus RB, Chen CS, Bittman R, Hokland P, Roy DC, Milojkovic D, Apperley J, Goldman JM, Reid A, Mulloy JC, Bhatia R, Marcucci G, Perrotti D. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013; 123:4144-57. [PMID: 23999433 DOI: 10.1172/jci68951] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022] Open
Abstract
The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase-independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression--but not activity--of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase-independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1-positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.
Collapse
|
12
|
Abstract
Protein phosphatase 2A (PP2A), one of the main serine-threonine phosphatases in mammalian cells, maintains cell homoeostasis by counteracting most of the kinase-driven intracellular signalling pathways. Unrestrained activation of oncogenic kinases together with inhibition of tumour suppressors is often required for development of cancer. PP2A has been shown to be genetically altered or functionally inactivated in many solid cancers and leukaemias, and is therefore a tumour suppressor. For example, the phosphatase activity of PP2A is suppressed in chronic myeloid leukaemia and other malignancies characterised by aberrant activity of oncogenic kinases. Preclinical studies show that pharmacological restoration of PP2A tumour-suppressor activity by PP2A-activating drugs (eg, FTY720) effectively antagonises cancer development and progression. Here, we discuss PP2A as a druggable tumour suppressor in view of the possible introduction of PP2A-activating drugs into anticancer therapeutic protocols.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210-2207, USA.
| | | |
Collapse
|
13
|
Ohanian M, Cortes J, Kantarjian H, Jabbour E. Tyrosine kinase inhibitors in acute and chronic leukemias. Expert Opin Pharmacother 2012; 13:927-38. [PMID: 22519766 DOI: 10.1517/14656566.2012.672974] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Since the initial approval of imatinib much has been learned about its resistance mechanisms, and efforts have continued to improve upon BCR-ABL tyrosine kinase inhibitor therapy. Targeted therapy with TKIs has continued to be an area of active research and development in the care of acute and chronic leukemia patients. AREAS COVERED This article reviews current approved and investigational TKI treatments for chronic myelogenous leukemia (CML), Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph + ALL) and acute myelogenous leukemia (AML). EXPERT OPINION There are now more potent BCR-ABL TKIs approved, which allow for additional options when determining front-line and second-line CML and Ph + ALL treatments. The T315I mutation is an ever-present challenge. Ponatinib, a pan BCR-ABL TKI, while still under investigation, is very hopeful with its ability to overcome T315I mutations in resistant CML and Ph + ALL patients. Because nilotinib and dasatinib have not been directly compared, at present we recommend selecting one or the other based on the side-effect profile, drug interactions, patient comorbidities, and mutational status. FLT-3 inhibition is of particular interest in AML patients with FLT-3 internal tandem duplication mutations; this type of targeted therapy continues to be studied.
Collapse
Affiliation(s)
- Maro Ohanian
- The University of Texas, M. D. Anderson Cancer Center, Department of Leukemia, 1515 Holcombe Blvd, Box 428, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The existence of cancer stem cells has long been postulated, but was proven less than 20 years ago following the demonstration that only a small sub-fraction of leukemic cells from acute myeloid leukemia patients were able to propagate the disease in xenografts. These cells were termed leukemic stem cells since they exist at the apex of a loose hierarchy, possess extensive self-renewal and the ability to undergo limited differentiation into leukemic blasts. Acute myeloid leukemia is a heterogeneous condition at both the phenotypic and molecular level with a variety of distinct genetic alterations giving rise to the disease. Recent studies have highlighted that this heterogeneity extends to the leukemic stem cell, with this dynamic compartment evolving to overcome various selection pressures imposed upon it during disease progression. The result is a complex situation in which multiple pools of leukemic stem cells may exist within individual patients which differ both phenotypically and molecularly. Since leukemic stem cells are thought to be resistant to current chemotherapeutic regimens and mediate disease relapse, their study also has potentially profound clinical implications. Numerous studies have generated important recent advances in the field, including the identification of novel leukemic stem cell-specific cell surface antigens and gene expression signatures. These tools will no doubt prove invaluable for the rational design of targeted therapies in the future.
Collapse
Affiliation(s)
- Sarah J Horton
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge, UK
| | | |
Collapse
|
15
|
Buss EC, Ho AD. Leukemia stem cells. Int J Cancer 2011; 129:2328-36. [PMID: 21796620 DOI: 10.1002/ijc.26318] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/12/2011] [Indexed: 12/18/2022]
Abstract
Leukemia stem cells (LSCs) might originate from malignant transformation of normal hematopoietic stem cells (HSCs), or alternatively, of progenitors in which the acquired mutations have re-installed a dysregulated self-renewal program. LSCs are on top of a hierarchy and generate leukemia cells with more differentiated characteristics. While most leukemia cells are initially sensitive to chemo- and radiotherapy, LSCs are resistant and are considered to be the basis for disease relapse after initial response. Albeit important knowledge on LSC biology has been gained from xenogeneic transplantation models introducing human leukemia cells into immune deficient mouse models, the prospective identification and isolation of human LSC candidates has remained elusive and their prognostic and therapeutic significance controversial. This review focuses on the identification, enrichment and characterization of human LSC derived from patients with acute myeloid leukemia (AML). Experimental data demonstrating the clinical significance of estimating LSC burden and strategies to eliminate LSC will be summarized. For long-term cure of AML, it is of importance to define LSC candidates and to understand their tumor biology compared to normal HSCs. Such comparative studies might provide novel markers for the identification of LSC and for the development of treatment strategies that might be able to eradicate them.
Collapse
Affiliation(s)
- Eike C Buss
- Department of Internal Medicine V, Heidelberg University Medical Center, Im Neuenheimer Feld 410, Heidelberg, Germany
| | | |
Collapse
|