1
|
Bidikian A, Bewersdorf JP, Shallis RM, Getz TM, Stempel JM, Kewan T, Stahl M, Zeidan AM. Targeted therapies for myelodysplastic syndromes/neoplasms (MDS): current landscape and future directions. Expert Rev Anticancer Ther 2024; 24:1131-1146. [PMID: 39367718 DOI: 10.1080/14737140.2024.2414071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematologic malignancies that are stratified into high-risk (HR-MDS) and low-risk (LR-MDS) categories. Until recently, LR-MDS has been typically managed by supportive measures and erythropoiesis-stimulating agents (ESAs); whereas management of HR-MDS typically included hypomethylating agents and allogeneic hematopoietic stem cell transplant. However, the limited rates and durations of response observed with these interventions prompted the search for targeted therapies to improve the outcomes among patients with MDS. AREAS COVERED Here, we review the current landscape of targeted therapies in MDS. These include pyruvate kinase and hypoxia-inducible factor (HIF) activators; TGF-beta, telomerase, BCL2 and isocitrate dehydrogenase (IDH) inhibitors; as well as novel approaches targeting inflammation, pyroptosis, immune evasion, and RNA splicing machinery. EXPERT OPINION This review highlights the progress and challenges in MDS treatment. Despite some promising results, many therapies remain in early development or have faced setbacks, emphasizing the need for a more comprehensive understanding of the disease's pathobiology. Continued research into targeted therapies, homogenous clinical trial designs, as well as increased incorporation of molecular prognostic tools and artificial intelligence into trial design are essential for developing effective treatments for MDS and improving patient outcomes.
Collapse
Affiliation(s)
- Aram Bidikian
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jan P Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Rory M Shallis
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Ted M Getz
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jessica M Stempel
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Tariq Kewan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
2
|
Madonna R, Biondi F, Ghelardoni S, D'Alleva A, Quarta S, Massaro M. Pulmonary hypertension associated to left heart disease: Phenotypes and treatment. Eur J Intern Med 2024; 129:1-15. [PMID: 39095300 DOI: 10.1016/j.ejim.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Pulmonary hypertension associated to left heart disease (PH-LHD) refers to a clinical and haemodynamic condition of pulmonary hypertension associated with a heterogeneous group of diseases affecting any of the compartments that form the left ventricle and left atrium. PH-LHD is the most common cause of PH, accounting for 65-80 % of diagnoses. Based on the haemodynamic phase of the disease, PH-LDH is classified into three subgroups: postcapillary PH, isolated postcapillary PH and combined pre-postcapillary PH (CpcPH). Several signaling pathways involved in the regulation of vascular tone are dysfunctional in PH-LHD, including nitric oxide, MAP kinase and endothelin-1 pathways. These pathways are the same as those altered in PH group 1, however PH-LHD can heardly be treated by specific drugs that act on the pulmonary circulation. In this manuscript we provide a state of the art of the available clinical trials investigating the safety and efficacy of PAH-specific drugs, as well as drugs active in patients with heart failure and PH-LHD. We also discuss the different phenotypes of PH-LHD, as well as molecular targets and signaling pathways potentially involved in the pathophysiology of the disease. Finally we will mention some new emerging therapies that can be used to treat this form of PH.
Collapse
Affiliation(s)
- Rosalinda Madonna
- University Cardiology Division, Pisa University Hospital and University of Pisa, Via Paradisa, 2, Pisa 56124, Italy.
| | - Filippo Biondi
- University Cardiology Division, Pisa University Hospital and University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce 73100, Italy
| |
Collapse
|
3
|
Petiti J, Itri F, Signorino E, Frolli A, Fava C, Armenio M, Marini S, Giugliano E, Lo Iacono M, Saglio G, Cilloni D. Detection of SF3B1 p.Lys700Glu Mutation by PNA-PCR Clamping in Myelodysplastic Syndromes and Myeloproliferative Neoplasms. J Clin Med 2022; 11:jcm11051267. [PMID: 35268357 PMCID: PMC8911290 DOI: 10.3390/jcm11051267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Mutations in SF3B1 are found in 20% of myelodysplastic syndromes and 5–10% of myeloproliferative neoplasms, where they are considered important for diagnosis and therapy decisions. Sanger sequencing and NGS are the currently available methods to identify SF3B1 mutations, but both are time-consuming and expensive techniques that are not practicable in most small-/medium-sized laboratories. To identify the most frequent SF3B1 mutation, p.Lys700Glu, we developed a novel fast and cheap assay based on PNA-PCR clamping. After setting the optimal PCR conditions, the limit of detection of PNA-PCR clamping was evaluated, and the method allowed up to 0.1% of mutated SF3B1 to be identified. Successively, PNA-PCR clamping and Sanger sequencing were used to blind test 90 DNA from patients affected by myelodysplastic syndromes and myeloproliferative neoplasms for the SF3B1 p.Lys700Glu mutation. PNA-PCR clamping and Sanger sequencing congruently identified 75 negative and 13 positive patients. Two patients identified as positive by PNA-PCR clamping were missed by Sanger analysis. The discordant samples were analyzed by NGS, which confirmed the PNA-PCR clamping result, indicating that these samples contained the SF3B1 p.Lys700Glu mutation. This approach could easily increase the characterization of myelodysplastic syndromes and myeloproliferative neoplasms in small-/medium-sized laboratories, and guide patients towards more appropriate therapy.
Collapse
Affiliation(s)
- Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
- Correspondence: (J.P.); (M.L.I.); Tel.: +39-011-670-5480 (J.P.); +39-011-670-5489 (M.L.I.)
| | - Federico Itri
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Antonio Frolli
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Marco Armenio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Silvia Marini
- Division of Internal Medicine and Hematology, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (S.M.); (E.G.)
| | - Emilia Giugliano
- Division of Internal Medicine and Hematology, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (S.M.); (E.G.)
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
- Correspondence: (J.P.); (M.L.I.); Tel.: +39-011-670-5480 (J.P.); +39-011-670-5489 (M.L.I.)
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| |
Collapse
|
4
|
Varricchio L, Iancu-Rubin C, Upadhyaya B, Zingariello M, Martelli F, Verachi P, Clementelli C, Denis JF, Rahman AH, Tremblay G, Mascarenhas J, Mesa RA, O'Connor-McCourt M, Migliaccio AR, Hoffman R. TGFβ1 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight 2021; 6:e145651. [PMID: 34383713 PMCID: PMC8492354 DOI: 10.1172/jci.insight.145651] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGF-β plays a pivotal role in the pathobiology of MF by promoting BM fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF-MKs elaborated significantly greater levels of TGF-β1 than TGF-β2 and TGF-β3 to a varying degree, and we evaluated the ability of AVID200, a potent TGF-β1/TGF-β3 protein trap, to block the excessive TGF-β signaling. Treatment of human mesenchymal stromal cells with AVID200 significantly reduced their proliferation, decreased phosphorylation of SMAD2, and interfered with the ability of TGF-β1 to induce collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PCs) with WT JAK2 rather than mutated JAK2V617F. This effect of AVID200 on MF PCs was attributed to its ability to block TGF-β1–induced p57Kip2 expression and SMAD2 activation, thereby allowing normal rather than MF PCs to preferentially proliferate and form hematopoietic colonies. To assess the in vivo effects of AVID200, Gata1lo mice, a murine model of MF, were treated with AVID200, resulting in the reduction in BM fibrosis and an increase in BM cellularity. AVID200 treatment also increased the frequency and numbers of murine progenitor cells as well as short-term and long-term HSCs. Collectively, these data provide the rationale for TGF-β1 blockade, with AVID200 as a therapeutic strategy for patients with MF.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Camelia Iancu-Rubin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Bhaskar Upadhyaya
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Cara Clementelli
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Adeeb H Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ruben A Mesa
- Hematology Oncology, Mays Cancer Center, San Antonio, United States of America
| | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
5
|
Schulz F, Nachtkamp K, Kasprzak A, Gattermann N, Haas R, Germing U. Luspatercept as a therapy for myelodysplastic syndromes with ring sideroblasts. Expert Rev Hematol 2021; 14:509-516. [PMID: 34161752 DOI: 10.1080/17474086.2021.1947791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell diseases characterized by cell dysplasia, ineffective hematopoiesis and risk of transformation to acute myeloid leukemia (AML). The median age of 75 years at diagnosis is associated with the presence of comorbidities, which preclude intensive therapies like allogeneic hematopoietic stem cell transplantation in most MDS patients. Risk stratification using the (Revised) International Prognostic Scoring System (IPSS/IPSS-R) is necessary to plan individualized treatment. AREAS COVERED Luspatercept (ACE-536), a specific activin receptor fusion protein, promotes late-stage erythropoiesis. Two clinical trials, PACE-MDS (phase 2) and MEDALIST (phase 3), yielded positive results in terms of improved hemoglobin levels and loss of transfusion dependence, with hardly any side effects. A phase 3 trial to compare luspatercept to ESAs (COMMANDS study) is ongoing. EXPERT OPINION Luspatercept is a promising alternative to ESAs for a subset of transfusion-dependent patients with lower risk MDS, namely those with a sideroblastic phenotype who are either not suitable for or have already failed erythropoietin-based treatment. The favorable safety profile and convenient subcutaneous administration every 3 weeks are more conducive to patients' quality of life than chronic red blood cell transfusion therapy.
Collapse
Affiliation(s)
- Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kathrin Nachtkamp
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Annika Kasprzak
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Parisi S, Finelli C, Fazio A, De Stefano A, Mongiorgi S, Ratti S, Cappellini A, Billi AM, Cocco L, Follo MY, Manzoli L. Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and β-Thalassemia. Int J Mol Sci 2021; 22:ijms22020827. [PMID: 33467674 PMCID: PMC7830211 DOI: 10.3390/ijms22020827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
Erythropoiesis regulation is essential in normal physiology and pathology, particularly in myelodysplastic syndromes (MDS) and β-thalassemia. Several signaling transduction processes, including those regulated by inositides, are implicated in erythropoiesis, and the latest MDS or β-thalassemia preclinical and clinical studies are now based on their regulation. Among others, the main pathways involved are those regulated by transforming growth factor (TGF)-β, which negatively regulates erythrocyte differentiation and maturation, and erythropoietin (EPO), which acts on the early-stage erythropoiesis. Also small mother against decapentaplegic (SMAD) signaling molecules play a role in pathology, and activin receptor ligand traps are being investigated for future clinical applications. Even inositide-dependent signaling, which is important in the regulation of cell proliferation and differentiation, is specifically associated with erythropoiesis, with phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K) as key players that are becoming increasingly important as new promising therapeutic targets. Additionally, Roxadustat, a new erythropoiesis stimulating agent targeting hypoxia inducible factor (HIF), is under clinical development. Here, we review the role and function of the above-mentioned signaling pathways, and we describe the state of the art and new perspectives of erythropoiesis regulation in MDS and β-thalassemia.
Collapse
Affiliation(s)
- Sarah Parisi
- Department of Oncology and Hematology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.P.); (C.F.)
- Department of Experimental, Diagnostic and Specialty Medicine DIMES, Institute of Hematology “L. and A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy
| | - Carlo Finelli
- Department of Oncology and Hematology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.P.); (C.F.)
- Department of Experimental, Diagnostic and Specialty Medicine DIMES, Institute of Hematology “L. and A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Alessandra Cappellini
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Matilde Y. Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
- Correspondence:
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| |
Collapse
|
7
|
Komrokji RS. Activin Receptor II Ligand Traps: New Treatment Paradigm for Low-Risk MDS. Curr Hematol Malig Rep 2020; 14:346-351. [PMID: 31203517 DOI: 10.1007/s11899-019-00517-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Alleviating cytopenias, namely anemia, is the main goal of therapy in lower-risk myelodysplastic syndromes (MDS). Current available treatment options remain limited. We review the role of TGF-B pathway in MDS, the current available data on luspatercept and sotatercept development. RECENT FINDINGS TGF-B pathway is overactivated in MDS contributing to observed myelosuppression. SMADs, the downstream proteins of TGF-B pathway, are upregulated. GDF-11 is a negative regulator of terminal erythroid differentiation and an activin receptor ligand. Sotatercept and luspatercept are fusion ligand trap novel agents for activin II receptors A and B, respectively. Early promising results have been reported with those novel agents for treating anemia in lower-risk MDS patients, and higher responses were observed among patients with ring sideroblasts and SF3B1 mutation. A phase III randomized clinical trial with luspatercept was recently conducted. Activin receptor II ligand traps may represent a new paradigm for anemia treatment in MDS.
Collapse
Affiliation(s)
- Rami S Komrokji
- Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Controversies on the Consequences of Iron Overload and Chelation in MDS. Hemasphere 2020; 4:e357. [PMID: 32647792 PMCID: PMC7306315 DOI: 10.1097/hs9.0000000000000357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many patients with MDS are prone to develop systemic and tissue iron overload in part as a consequence of disease-immanent ineffective erythropoiesis. However, chronic red blood cell transfusions, which are part of the supportive care regimen to correct anemia, are the major source of iron overload in MDS. Increased systemic iron levels eventually lead to the saturation of the physiological systemic iron carrier transferrin and the occurrence of non-transferrin-bound iron (NTBI) together with its reactive fraction, the labile plasma iron (LPI). NTBI/LPI-mediated toxicity and tissue iron overload may exert multiple detrimental effects that contribute to the pathogenesis, complications and eventually evolution of MDS. Until recently, the evidence supporting the use of iron chelation in MDS was based on anecdotal reports, uncontrolled clinical trials or prospective registries. Despite not fully conclusive, these and more recent studies, including the TELESTO trial, unravel an overall adverse action of iron overload and therapeutic benefit of chelation, ranging from improved hematological outcome, reduced transfusion dependence and superior survival of iron-loaded MDS patients. The still limited and somehow controversial experimental and clinical data available from preclinical studies and randomized trials highlight the need for further investigation to fully elucidate the mechanisms underlying the pathological impact of iron overload-mediated toxicity as well as the effect of classic and novel iron restriction approaches in MDS. This review aims at providing an overview of the current clinical and translational debated landscape about the consequences of iron overload and chelation in the setting of MDS.
Collapse
|
9
|
Canaani J. Emerging Therapies for the Myelodysplastic Syndromes. Clin Hematol Int 2020; 2:13-17. [PMID: 34595438 PMCID: PMC8432342 DOI: 10.2991/chi.d.191202.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 01/11/2023] Open
Abstract
Despite considerable advances in our understanding of the molecular and epigenetic underpinnings of the myelodysplastic syndromes (MDS), this diverse group of myeloid neoplasms remains a significant clinical challenge. Considerable barriers to timely development of effective therapy include the diverse molecular landscape encountered in MDS patients, the difficulty in translating specific molecular aberration into a clinically meaningful animal model, as well as challenges in patient recruitment into clinical trials. These speak to the need to discover efficacious novel therapeutic targets which would in turn translate into improved patient outcomes in terms of both survival and quality of life. In this review, we outline recently published data pertaining to therapeutic advances in TGF-β pathway inhibition, STAT3, Hedgehog signaling, and additional therapeutic venues being actively explored in MDS.
Collapse
Affiliation(s)
- Jonathan Canaani
- Hematology Division, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Sotatercept and luspatercept are recombinant soluble activin type-II receptor-IgG-Fc fusion proteins that are tested in clinical trials for the treatment of various types of anemias, including renal anemia. The mechanism of the action of the novel drugs is incompletely understood, but it seems to be based on the inactivation of soluble proteins of the transforming growth factor-ß (TGFß) family. This review considers pros and cons of the clinical use of the drugs in reference to the current therapy with recombinant erythropoiesis-stimulating agents (ESAs). RECENT FINDINGS One or more activin type-II receptor (ActRII) ligands appear to inhibit erythroid precursors, for example growth and differentiation factor 11. Trapping of these ligands by the recombinant ActRII fusion proteins, sotatercept and luspatercept increases red blood cell numbers and hemoglobin levels in humans. Reportedly, the novel compounds were well tolerated in trials on healthy volunteers and patients suffering from anemia due to chronic kidney disease or malignancies. On approval, the drugs may prove particularly useful in patients suffering from ineffective erythropoiesis, such as in myelodysplastic syndrome, multiple myeloma or ß-thalassemia, where ESAs are of little use. Independent of their effect on erythropoiesis, ActRII ligand traps were found to exert beneficial effects on renal tissue in experimental animals. SUMMARY ESAs are likely to remain standard of care in renal anemia. There is a need for a better understanding of the effects of ActRII ligand traps on TGFß-like proteins. The novel drugs have not been approved for sale as therapeutics so far. Their long-term efficacy and safety still needs to be proven, particularly with respect to immunogenicity. Antifibrotic effects may be worthy to be investigated in humans.
Collapse
|
11
|
Bataller A, Montalban-Bravo G, Soltysiak KA, Garcia-Manero G. The role of TGFβ in hematopoiesis and myeloid disorders. Leukemia 2019; 33:1076-1089. [PMID: 30816330 DOI: 10.1038/s41375-019-0420-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
The role of transforming growth factor-β (TGFβ) signaling in embryological development and tissue homeostasis has been thoroughly characterized. Its canonical downstream cascade is well known, even though its true complexity and other non-canonical pathways are still being explored. TGFβ signaling has been described as an important pathway involved in carcinogenesis and cancer progression. In the hematopoietic compartment, the TGFβ pathway is an important regulator of proliferation and differentiation of different cell types and has been implicated in the pathogenesis of a diverse variety of bone marrow disorders. Due to its importance in hematological diseases, novel inhibitors of this pathway are being developed against a number of hematopoietic disorders, including myelodysplastic syndromes (MDS). In this review, we provide an overview of the TGFβ pathway, focusing on its role in hematopoiesis and impact on myeloid disorders. We will discuss therapeutic interventions with promising results against MDS.
Collapse
Affiliation(s)
- Alex Bataller
- Hematology Department, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Kelly A Soltysiak
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
12
|
Fattizzo B, Zaninoni A, Gianelli U, Zanella A, Cortelezzi A, Kulasekararaj AG, Barcellini W. Prognostic impact of bone marrow fibrosis and dyserythropoiesis in autoimmune hemolytic anemia. Am J Hematol 2018; 93:E88-E91. [PMID: 29274091 DOI: 10.1002/ajh.25020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Bruno Fattizzo
- Hematology Unit; IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan; Milan Italy
| | - Anna Zaninoni
- Hematology Unit; IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan; Milan Italy
| | - Umberto Gianelli
- Hemopathology Unit; IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan; Milan Italy
| | - Alberto Zanella
- Hematology Unit; IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan; Milan Italy
| | - Agostino Cortelezzi
- Hematology Unit; IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan; Milan Italy
| | | | - Wilma Barcellini
- Hematology Unit; IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan; Milan Italy
| |
Collapse
|
13
|
Ivy KS, Brent Ferrell P. Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes. Curr Hematol Malig Rep 2018; 13:244-255. [PMID: 29934935 PMCID: PMC6560359 DOI: 10.1007/s11899-018-0463-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Immune dysregulation is a defining feature of myelodysplastic syndromes (MDS). Recently, several studies have further defined the complex role of immune alterations within MDS. Herein, we will summarize some of these findings and discuss the therapeutic strategies currently in development. RECENT FINDINGS Immune alterations in MDS are complex, heterogeneous, and intertwined with clonal hematopoiesis and stromal cell dysfunction. Inflammation in MDS proceeds as a vicious cycle, mediated in large part by secreted factors, which induce cell death and activate innate immune signaling. Therapeutic targeting of this variable immune dysregulation has led to modest responses thus far, but incorporation of the growing repertoire of immunotherapy brings new potential for improved outcomes. The immune milieu is variable across the spectrum of MDS subtypes, with a changing balance of inflammatory and suppressive cellular forces from low- to high-risk disease.
Collapse
Affiliation(s)
- Kathryn S Ivy
- Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Safety and efficacy of the CD95-ligand inhibitor asunercept in transfusion-dependent patients with low and intermediate risk MDS. Leuk Res 2018; 68:62-69. [DOI: 10.1016/j.leukres.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 11/21/2022]
|
15
|
Santini V. Of blood and bone: the sotatercept adventure. LANCET HAEMATOLOGY 2018; 5:e54-e55. [DOI: 10.1016/s2352-3026(18)30003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
|
16
|
Biggar P, Kim GH. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond. Kidney Res Clin Pract 2017; 36:209-223. [PMID: 28904872 PMCID: PMC5592888 DOI: 10.23876/j.krcp.2017.36.3.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Anemia, complicating the course of chronic kidney disease, is a significant parameter, whether interpreted as subjective impairment or an objective prognostic marker. Renal anemia is predominantly due to relative erythropoietin (EPO) deficiency. EPO inhibits apoptosis of erythrocyte precursors. Studies using EPO substitution have shown that increasing hemoglobin (Hb) levels up to 10–11 g/dL is associated with clinical improvement. However, it has not been unequivocally proven that further intensification of erythropoiesis stimulating agent (ESA) therapy actually leads to a comprehensive benefit for the patient, especially as ESAs are potentially associated with increased cerebro-cardiovascular events. Recently, new developments offer interesting options not only via stimulating erythropoeisis but also by employing additional mechanisms. The inhibition of activin, a member of the transforming growth factor superfamily, has the potential to correct anemia by stimulating liberation of mature erythrocyte forms and also to mitigate disturbed mineral and bone metabolism as well. Hypoxia-inducible factor prolyl hydroxylase inhibitors also show pleiotropic effects, which are at the focus of present research and have the potential of reducing mortality. However, conventional ESAs offer an extensive body of safety evidence, against which the newer substances should be measured. Carbamylated EPO is devoid of Hb augmenting effects whilst exerting promising tissue protective properties. Additionally, the role of hepcidin antagonists is discussed. An innovative new hemodialysis blood tube system, reducing blood contact with air, conveys a totally different and innocuous option to improve renal anemia by reducing mechanical hemolysis.
Collapse
Affiliation(s)
- Patrick Biggar
- Department of Nephrology, Klinikum Coburg, GmbH, Coburg, Germany.,KfH Kidney Centre, Coburg, Germany
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Mies A, Platzbecker U. Increasing the effectiveness of hematopoiesis in myelodysplastic syndromes: erythropoiesis-stimulating agents and transforming growth factor-β superfamily inhibitors. Semin Hematol 2017; 54:141-146. [PMID: 28958287 DOI: 10.1053/j.seminhematol.2017.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/11/2023]
Abstract
Patients with lower-risk myelodysplastic syndromes (MDS) are mainly affected by chronic anemia and fatigue. Treatment strategies aim to improve anemia and quality of life, as well as iron overload due to red blood cell transfusion support. To promote proliferation and differentiation of erythropoiesis, erythropoiesis-stimulating agents (ESAs) such as erythropoietin (EPO) and mimetics are applied as first-line therapy in a large fraction of lower-risk MDS patients. In general, ESAs yield favorable responses in about half of the patients, although responses are often short-lived. In fact, many ESA-refractory patients harbor defects in late-stage erythropoiesis downstream of EPO action. Novel transforming growth factor (TGF)-β superfamily inhibitors sotatercept and luspatercept represent a promising approach to alleviate anemia by stimulating erythroid differentiation.
Collapse
Affiliation(s)
- Anna Mies
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Uwe Platzbecker
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Yoshimi A, Abdel-Wahab O. Splicing factor mutations in MDS RARS and MDS/MPN-RS-T. Int J Hematol 2017; 105:720-731. [PMID: 28466384 DOI: 10.1007/s12185-017-2242-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 01/19/2023]
Abstract
Spliceosomal mutations, especially mutations in SF3B1, are frequently (>80%) identified in patients with refractory anemia with ringed sideroblasts (RARS) and myelodysplastic/myeloproliferative neoplasms with ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T; previously known as RARS-T), and SF3B1 mutations have a high positive predictive value for disease phenotype with ringed sideroblasts. These observations suggest that SF3B1 mutations play important roles in the pathogenesis of these disorders and formation of ringed sideroblasts. Here we will review recent insights into the molecular mechanisms of mis-splicing caused by mutant SF3B1 and the pathogenesis of RSs in the context of congenital sideroblastic anemia as well as RARS with SF3B1 mutations. We will also discuss therapy of SF3B1 mutant MDS, including novel approaches.
Collapse
Affiliation(s)
- Akihide Yoshimi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, Zuckerman 601, 408 East 69th Street, New York, NY, 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, Zuckerman 601, 408 East 69th Street, New York, NY, 10065, USA.
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|